纹理特征提取方法与深度学习检测COVID-19的比较

Dionisius Adianto Tirta Nugraha, A. Nasution
{"title":"纹理特征提取方法与深度学习检测COVID-19的比较","authors":"Dionisius Adianto Tirta Nugraha, A. Nasution","doi":"10.1109/CyberneticsCom55287.2022.9865582","DOIUrl":null,"url":null,"abstract":"This paper describes research on texture feature extraction for COVID-19 detection. Fractal Dimension Texture Analysis (FDTA) and Gray Level Co-occurrence Matrix (GLCM) were used for feature extraction. A dense neural network is used for classification. Three classes were used for classification to classify Normal, COVID-19, and Other pneumonia. The data entered in the texture feature extraction is a chest x-ray (CXR) image that is grey scaled and resized into 400x400 pixels. Performance analysis of the model uses a confusion matrix. The best performance feature extraction method for detecting COVID-19 is FDTA, with an accuracy testing of 62.5%.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Texture Feature Extraction Method for COVID-19 Detection With Deep Learning\",\"authors\":\"Dionisius Adianto Tirta Nugraha, A. Nasution\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes research on texture feature extraction for COVID-19 detection. Fractal Dimension Texture Analysis (FDTA) and Gray Level Co-occurrence Matrix (GLCM) were used for feature extraction. A dense neural network is used for classification. Three classes were used for classification to classify Normal, COVID-19, and Other pneumonia. The data entered in the texture feature extraction is a chest x-ray (CXR) image that is grey scaled and resized into 400x400 pixels. Performance analysis of the model uses a confusion matrix. The best performance feature extraction method for detecting COVID-19 is FDTA, with an accuracy testing of 62.5%.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对COVID-19检测中的纹理特征提取进行了研究。采用分形维织构分析(FDTA)和灰度共生矩阵(GLCM)进行特征提取。使用密集神经网络进行分类。采用3个分类对正常肺炎、COVID-19肺炎和其他肺炎进行分类。纹理特征提取中输入的数据是胸部x射线(CXR)图像,该图像经过灰度缩放并调整为400x400像素。模型的性能分析使用混淆矩阵。检测COVID-19的最佳特征提取方法是FDTA,准确率测试为62.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Texture Feature Extraction Method for COVID-19 Detection With Deep Learning
This paper describes research on texture feature extraction for COVID-19 detection. Fractal Dimension Texture Analysis (FDTA) and Gray Level Co-occurrence Matrix (GLCM) were used for feature extraction. A dense neural network is used for classification. Three classes were used for classification to classify Normal, COVID-19, and Other pneumonia. The data entered in the texture feature extraction is a chest x-ray (CXR) image that is grey scaled and resized into 400x400 pixels. Performance analysis of the model uses a confusion matrix. The best performance feature extraction method for detecting COVID-19 is FDTA, with an accuracy testing of 62.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信