模块对齐发现的可视化

Xiang Chaojuan, Xie Jiang, Gu Yongli, Xu Junfu, Lu Kai
{"title":"模块对齐发现的可视化","authors":"Xiang Chaojuan, Xie Jiang, Gu Yongli, Xu Junfu, Lu Kai","doi":"10.1109/CHICC.2015.7260991","DOIUrl":null,"url":null,"abstract":"Network alignment is an efficient approach for understanding similarities and dissimilarities of protein interaction networks (PINs) from different species. However, it's difficult to visualize matching status for large-scale PINs even if accurate alignments are found. As we know, PINs can be structured by clustering based on detecting modularity. In this paper, we combine clustering with network alignment to display alignment results, and pairs of modules that most proteins in them are matched, named aligned modules, are discovered intuitively by some visualization tools we developed. Experiments on Homo sapiens and Saccharomyces cerevisiae PIN datasets demonstrate that the visualization is helpful for analyzing large scale network alignments, especially when module alignments are discovered in a visual way.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of module alignment discovery\",\"authors\":\"Xiang Chaojuan, Xie Jiang, Gu Yongli, Xu Junfu, Lu Kai\",\"doi\":\"10.1109/CHICC.2015.7260991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network alignment is an efficient approach for understanding similarities and dissimilarities of protein interaction networks (PINs) from different species. However, it's difficult to visualize matching status for large-scale PINs even if accurate alignments are found. As we know, PINs can be structured by clustering based on detecting modularity. In this paper, we combine clustering with network alignment to display alignment results, and pairs of modules that most proteins in them are matched, named aligned modules, are discovered intuitively by some visualization tools we developed. Experiments on Homo sapiens and Saccharomyces cerevisiae PIN datasets demonstrate that the visualization is helpful for analyzing large scale network alignments, especially when module alignments are discovered in a visual way.\",\"PeriodicalId\":421276,\"journal\":{\"name\":\"2015 34th Chinese Control Conference (CCC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 34th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2015.7260991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络比对是了解不同物种蛋白质相互作用网络相似性和差异性的有效方法。然而,即使找到了精确的对齐,大规模pin的匹配状态也很难可视化。我们知道,pin可以通过基于检测模块化的聚类来构建。本文将聚类与网络比对相结合来显示比对结果,通过开发的可视化工具直观地发现其中蛋白质匹配最多的模块对,称为比对模块。在智人和酿酒酵母PIN数据集上的实验表明,可视化有助于分析大规模的网络比对,特别是当以可视化的方式发现模块比对时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of module alignment discovery
Network alignment is an efficient approach for understanding similarities and dissimilarities of protein interaction networks (PINs) from different species. However, it's difficult to visualize matching status for large-scale PINs even if accurate alignments are found. As we know, PINs can be structured by clustering based on detecting modularity. In this paper, we combine clustering with network alignment to display alignment results, and pairs of modules that most proteins in them are matched, named aligned modules, are discovered intuitively by some visualization tools we developed. Experiments on Homo sapiens and Saccharomyces cerevisiae PIN datasets demonstrate that the visualization is helpful for analyzing large scale network alignments, especially when module alignments are discovered in a visual way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信