Matthew Lakier, Dimcho Karakashev, Yixin Wang, I. Goldberg
{"title":"使用预触控信息的智能手机增强解锁技术","authors":"Matthew Lakier, Dimcho Karakashev, Yixin Wang, I. Goldberg","doi":"10.1145/3385959.3418455","DOIUrl":null,"url":null,"abstract":"Smartphones secure a significant amount of personal and private information, and are playing an increasingly important role in people’s lives. However, current techniques to manually authenticate to smartphones have failed in both not-so-surprising (shoulder surfing) and quite surprising (smudge attacks) ways. In this work, we propose a new technique called 3D Pattern. Our 3D Pattern technique takes advantage of pre-touch sensing, which could soon allow smartphones to sense a user’s finger position at some distance from the screen. We describe and implement the technique, and evaluate it in a small pilot study (n=6) by comparing it to PIN and pattern locks. Our results show that although our prototype takes longer to authenticate, it is completely immune to smudge attacks and promises to be more resistant to shoulder surfing.","PeriodicalId":157249,"journal":{"name":"Proceedings of the 2020 ACM Symposium on Spatial User Interaction","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Augmented Unlocking Techniques for Smartphones Using Pre-Touch Information\",\"authors\":\"Matthew Lakier, Dimcho Karakashev, Yixin Wang, I. Goldberg\",\"doi\":\"10.1145/3385959.3418455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones secure a significant amount of personal and private information, and are playing an increasingly important role in people’s lives. However, current techniques to manually authenticate to smartphones have failed in both not-so-surprising (shoulder surfing) and quite surprising (smudge attacks) ways. In this work, we propose a new technique called 3D Pattern. Our 3D Pattern technique takes advantage of pre-touch sensing, which could soon allow smartphones to sense a user’s finger position at some distance from the screen. We describe and implement the technique, and evaluate it in a small pilot study (n=6) by comparing it to PIN and pattern locks. Our results show that although our prototype takes longer to authenticate, it is completely immune to smudge attacks and promises to be more resistant to shoulder surfing.\",\"PeriodicalId\":157249,\"journal\":{\"name\":\"Proceedings of the 2020 ACM Symposium on Spatial User Interaction\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM Symposium on Spatial User Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3385959.3418455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM Symposium on Spatial User Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385959.3418455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Augmented Unlocking Techniques for Smartphones Using Pre-Touch Information
Smartphones secure a significant amount of personal and private information, and are playing an increasingly important role in people’s lives. However, current techniques to manually authenticate to smartphones have failed in both not-so-surprising (shoulder surfing) and quite surprising (smudge attacks) ways. In this work, we propose a new technique called 3D Pattern. Our 3D Pattern technique takes advantage of pre-touch sensing, which could soon allow smartphones to sense a user’s finger position at some distance from the screen. We describe and implement the technique, and evaluate it in a small pilot study (n=6) by comparing it to PIN and pattern locks. Our results show that although our prototype takes longer to authenticate, it is completely immune to smudge attacks and promises to be more resistant to shoulder surfing.