印尼语词性标注器的研究

R. S. Yuwana, A. R. Yuliani, H. Pardede
{"title":"印尼语词性标注器的研究","authors":"R. S. Yuwana, A. R. Yuliani, H. Pardede","doi":"10.1109/ICITISEE.2017.8285530","DOIUrl":null,"url":null,"abstract":"In this paper we present an evaluation of six popular methods for Part-of-Speech (POS) tagging tasks of Indonesian language. They are Unigram, Hidden Markov Model, TnT, Brills, Naive Bayes, and Maximum Entropy taggers. Indonesian language, while is one of most spoken language in the world has very limited data for POS tagging tasks. Therefore, it is interesting to investigate and evaluate some popular approaches in POS tagging when dealing for such conditions. The results of our experiments show that Maximum Entropy provides the highest accuracy of all methods. It is consistently better even when the size of the training data is varied.","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On part of speech tagger for Indonesian language\",\"authors\":\"R. S. Yuwana, A. R. Yuliani, H. Pardede\",\"doi\":\"10.1109/ICITISEE.2017.8285530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an evaluation of six popular methods for Part-of-Speech (POS) tagging tasks of Indonesian language. They are Unigram, Hidden Markov Model, TnT, Brills, Naive Bayes, and Maximum Entropy taggers. Indonesian language, while is one of most spoken language in the world has very limited data for POS tagging tasks. Therefore, it is interesting to investigate and evaluate some popular approaches in POS tagging when dealing for such conditions. The results of our experiments show that Maximum Entropy provides the highest accuracy of all methods. It is consistently better even when the size of the training data is varied.\",\"PeriodicalId\":130873,\"journal\":{\"name\":\"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITISEE.2017.8285530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文对印尼语词性标注的六种常用方法进行了评价。它们是Unigram, Hidden Markov Model, TnT, Brills,朴素贝叶斯和最大熵标记器。印尼语虽然是世界上使用最多的语言之一,但用于词性标注任务的数据非常有限。因此,在处理这种情况时,调查和评估一些流行的词性标注方法是很有趣的。我们的实验结果表明,最大熵提供了所有方法中最高的准确性。即使训练数据的大小不同,它也总是更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On part of speech tagger for Indonesian language
In this paper we present an evaluation of six popular methods for Part-of-Speech (POS) tagging tasks of Indonesian language. They are Unigram, Hidden Markov Model, TnT, Brills, Naive Bayes, and Maximum Entropy taggers. Indonesian language, while is one of most spoken language in the world has very limited data for POS tagging tasks. Therefore, it is interesting to investigate and evaluate some popular approaches in POS tagging when dealing for such conditions. The results of our experiments show that Maximum Entropy provides the highest accuracy of all methods. It is consistently better even when the size of the training data is varied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信