人脸检测与跟踪的统一随机模型

Sachin Gangaputra, D. Geman
{"title":"人脸检测与跟踪的统一随机模型","authors":"Sachin Gangaputra, D. Geman","doi":"10.1109/CRV.2005.12","DOIUrl":null,"url":null,"abstract":"We propose merging face detection and face tracking into a single probabilistic framework. The motivation stems from a broader project in algorithmic modeling, centered on the design and analysis of the online computational process in visual recognition. Detection is represented as a tree-structured graphical network in which likelihoods are assigned to each history or \"trace\" of processing, thereby introducing a new probabilistic component into coarse-to-fine search strategies. When embedded within a temporal Markov framework, the resulting tracking system yields encouraging results.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A unified stochastic model for detecting and tracking faces\",\"authors\":\"Sachin Gangaputra, D. Geman\",\"doi\":\"10.1109/CRV.2005.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose merging face detection and face tracking into a single probabilistic framework. The motivation stems from a broader project in algorithmic modeling, centered on the design and analysis of the online computational process in visual recognition. Detection is represented as a tree-structured graphical network in which likelihoods are assigned to each history or \\\"trace\\\" of processing, thereby introducing a new probabilistic component into coarse-to-fine search strategies. When embedded within a temporal Markov framework, the resulting tracking system yields encouraging results.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出将人脸检测和人脸跟踪合并到一个概率框架中。动机源于一个更广泛的算法建模项目,集中在视觉识别在线计算过程的设计和分析上。检测被表示为一个树状结构的图形网络,其中概率被分配到每个历史或处理的“痕迹”,从而在粗到细的搜索策略中引入了一个新的概率成分。当嵌入到时间马尔可夫框架中时,所产生的跟踪系统产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified stochastic model for detecting and tracking faces
We propose merging face detection and face tracking into a single probabilistic framework. The motivation stems from a broader project in algorithmic modeling, centered on the design and analysis of the online computational process in visual recognition. Detection is represented as a tree-structured graphical network in which likelihoods are assigned to each history or "trace" of processing, thereby introducing a new probabilistic component into coarse-to-fine search strategies. When embedded within a temporal Markov framework, the resulting tracking system yields encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信