{"title":"多核处理器系统上科学工作负载的表征","authors":"S. Alam, R. Barrett, J. Kuehn, P. Roth, J. Vetter","doi":"10.1109/IISWC.2006.302747","DOIUrl":null,"url":null,"abstract":"Multi-core processors are planned for virtually all next-generation HPC systems. In a preliminary evaluation of AMD Opteron Dual-Core processor systems, we investigated the scaling behavior of a set of micro-benchmarks, kernels, and applications. In addition, we evaluated a number of processor affinity techniques for managing memory placement on these multi-core systems. We discovered that an appropriate selection of MPI task and memory placement schemes can result in over 25% performance improvement for key scientific calculations. We collected detailed performance data for several large-scale scientific applications. Analyses of the application performance results confirmed our micro-benchmark and scaling results","PeriodicalId":222041,"journal":{"name":"2006 IEEE International Symposium on Workload Characterization","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"Characterization of Scientific Workloads on Systems with Multi-Core Processors\",\"authors\":\"S. Alam, R. Barrett, J. Kuehn, P. Roth, J. Vetter\",\"doi\":\"10.1109/IISWC.2006.302747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-core processors are planned for virtually all next-generation HPC systems. In a preliminary evaluation of AMD Opteron Dual-Core processor systems, we investigated the scaling behavior of a set of micro-benchmarks, kernels, and applications. In addition, we evaluated a number of processor affinity techniques for managing memory placement on these multi-core systems. We discovered that an appropriate selection of MPI task and memory placement schemes can result in over 25% performance improvement for key scientific calculations. We collected detailed performance data for several large-scale scientific applications. Analyses of the application performance results confirmed our micro-benchmark and scaling results\",\"PeriodicalId\":222041,\"journal\":{\"name\":\"2006 IEEE International Symposium on Workload Characterization\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Workload Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2006.302747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2006.302747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Scientific Workloads on Systems with Multi-Core Processors
Multi-core processors are planned for virtually all next-generation HPC systems. In a preliminary evaluation of AMD Opteron Dual-Core processor systems, we investigated the scaling behavior of a set of micro-benchmarks, kernels, and applications. In addition, we evaluated a number of processor affinity techniques for managing memory placement on these multi-core systems. We discovered that an appropriate selection of MPI task and memory placement schemes can result in over 25% performance improvement for key scientific calculations. We collected detailed performance data for several large-scale scientific applications. Analyses of the application performance results confirmed our micro-benchmark and scaling results