黄河三角洲土壤水分偏振SAR制图

Lihua Lan, Tingting Zhang, Y. Shao, Zhengshan Ju, Xun Chai
{"title":"黄河三角洲土壤水分偏振SAR制图","authors":"Lihua Lan, Tingting Zhang, Y. Shao, Zhengshan Ju, Xun Chai","doi":"10.1109/IGARSS39084.2020.9324034","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to use the partial least squares regression as a modeling method to establish the relationship between soil moisture and polarimetric decomposition parameters which are obtained by T3 matrix and $\\mathrm{H}/\\mathrm{A}/\\alpha$ polarimetric decomposition with full-polarization RADARSAT-2 SAR image. The results show that the parameter set of T3 matrix have the minimum accuracy comparing with the other three decomposition ways of the $\\mathrm{H}/\\mathrm{A}/\\alpha$. The best results of the $\\mathrm{H}/\\mathrm{A}/\\alpha$ is the Eigenvector parameter set. However, it is still lower than the inversion of parameter combinations with R2 of 0.84 for calibration and R2 of 0.77 for validation. It indicates that the polarimetric decomposition parameters can be used for mapping soil moisture in Huanghe Delta.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil Moisture Mapping with Polarimetric SAR in Huanghe Delta of China\",\"authors\":\"Lihua Lan, Tingting Zhang, Y. Shao, Zhengshan Ju, Xun Chai\",\"doi\":\"10.1109/IGARSS39084.2020.9324034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to use the partial least squares regression as a modeling method to establish the relationship between soil moisture and polarimetric decomposition parameters which are obtained by T3 matrix and $\\\\mathrm{H}/\\\\mathrm{A}/\\\\alpha$ polarimetric decomposition with full-polarization RADARSAT-2 SAR image. The results show that the parameter set of T3 matrix have the minimum accuracy comparing with the other three decomposition ways of the $\\\\mathrm{H}/\\\\mathrm{A}/\\\\alpha$. The best results of the $\\\\mathrm{H}/\\\\mathrm{A}/\\\\alpha$ is the Eigenvector parameter set. However, it is still lower than the inversion of parameter combinations with R2 of 0.84 for calibration and R2 of 0.77 for validation. It indicates that the polarimetric decomposition parameters can be used for mapping soil moisture in Huanghe Delta.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用偏最小二乘回归作为建模方法,建立全极化RADARSAT-2 SAR影像中由T3矩阵和$\ mathm {H}/\ mathm {a}/\alpha$极化分解得到的土壤湿度与极化分解参数之间的关系。结果表明,与$\ mathm {H}/\ mathm {A}/\alpha$的其他三种分解方法相比,T3矩阵的参数集具有最低的精度。$\mathrm{H}/\mathrm{A}/\alpha$的最佳结果是特征向量参数集。但仍低于参数组合的反演,校正R2为0.84,验证R2为0.77。结果表明,极化分解参数可用于黄河三角洲土壤水分制图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soil Moisture Mapping with Polarimetric SAR in Huanghe Delta of China
The objective of this paper is to use the partial least squares regression as a modeling method to establish the relationship between soil moisture and polarimetric decomposition parameters which are obtained by T3 matrix and $\mathrm{H}/\mathrm{A}/\alpha$ polarimetric decomposition with full-polarization RADARSAT-2 SAR image. The results show that the parameter set of T3 matrix have the minimum accuracy comparing with the other three decomposition ways of the $\mathrm{H}/\mathrm{A}/\alpha$. The best results of the $\mathrm{H}/\mathrm{A}/\alpha$ is the Eigenvector parameter set. However, it is still lower than the inversion of parameter combinations with R2 of 0.84 for calibration and R2 of 0.77 for validation. It indicates that the polarimetric decomposition parameters can be used for mapping soil moisture in Huanghe Delta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信