预测人类最短路径任务性能的机器学习方法

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shijun Cai , Seok-Hee Hong , Xiaobo Xia , Tongliang Liu , Weidong Huang
{"title":"预测人类最短路径任务性能的机器学习方法","authors":"Shijun Cai ,&nbsp;Seok-Hee Hong ,&nbsp;Xiaobo Xia ,&nbsp;Tongliang Liu ,&nbsp;Weidong Huang","doi":"10.1016/j.visinf.2022.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Finding a shortest path for a given pair of vertices in a graph drawing is one of the fundamental tasks for qualitative evaluation of graph drawings. In this paper, we present the first machine learning approach to predict human shortest path task performance, including accuracy, response time, and mental effort.</p><p>To predict the shortest path task performance, we utilize correlated quality metrics and the ground truth data from the shortest path experiments. Specifically, we introduce <em>path faithfulness metrics</em> and show strong correlations with the shortest path task performance. Moreover, to mitigate the problem of insufficient ground truth training data, we use the transfer learning method to pre-train our deep model, exploiting the correlated quality metrics.</p><p>Experimental results using the ground truth human shortest path experiment data show that our models can successfully predict the shortest path task performance. In particular, model MSP achieves an MSE (i.e., test mean square error) of 0.7243 (i.e., data range from −17.27 to 1.81) for prediction.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 2","pages":"Pages 50-61"},"PeriodicalIF":3.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000183/pdfft?md5=8b220940e42fe9792587af3d422a3e28&pid=1-s2.0-S2468502X22000183-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach for predicting human shortest path task performance\",\"authors\":\"Shijun Cai ,&nbsp;Seok-Hee Hong ,&nbsp;Xiaobo Xia ,&nbsp;Tongliang Liu ,&nbsp;Weidong Huang\",\"doi\":\"10.1016/j.visinf.2022.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finding a shortest path for a given pair of vertices in a graph drawing is one of the fundamental tasks for qualitative evaluation of graph drawings. In this paper, we present the first machine learning approach to predict human shortest path task performance, including accuracy, response time, and mental effort.</p><p>To predict the shortest path task performance, we utilize correlated quality metrics and the ground truth data from the shortest path experiments. Specifically, we introduce <em>path faithfulness metrics</em> and show strong correlations with the shortest path task performance. Moreover, to mitigate the problem of insufficient ground truth training data, we use the transfer learning method to pre-train our deep model, exploiting the correlated quality metrics.</p><p>Experimental results using the ground truth human shortest path experiment data show that our models can successfully predict the shortest path task performance. In particular, model MSP achieves an MSE (i.e., test mean square error) of 0.7243 (i.e., data range from −17.27 to 1.81) for prediction.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 2\",\"pages\":\"Pages 50-61\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000183/pdfft?md5=8b220940e42fe9792587af3d422a3e28&pid=1-s2.0-S2468502X22000183-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X22000183\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000183","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

图中给定顶点对的最短路径求解是图的定性评价的基本任务之一。在本文中,我们提出了第一个预测人类最短路径任务性能的机器学习方法,包括准确性、响应时间和脑力劳动。为了预测最短路径任务的性能,我们利用相关的质量指标和最短路径实验的真实数据。具体来说,我们引入了路径忠实度指标,并显示了与最短路径任务性能的强相关性。此外,为了缓解地面真值训练数据不足的问题,我们使用迁移学习方法来预训练我们的深度模型,利用相关的质量指标。使用地面真实人类最短路径实验数据的实验结果表明,我们的模型可以成功地预测最短路径任务的性能。特别是,模型MSP的预测MSE(即检验均方误差)为0.7243(即数据范围为- 17.27至1.81)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach for predicting human shortest path task performance

Finding a shortest path for a given pair of vertices in a graph drawing is one of the fundamental tasks for qualitative evaluation of graph drawings. In this paper, we present the first machine learning approach to predict human shortest path task performance, including accuracy, response time, and mental effort.

To predict the shortest path task performance, we utilize correlated quality metrics and the ground truth data from the shortest path experiments. Specifically, we introduce path faithfulness metrics and show strong correlations with the shortest path task performance. Moreover, to mitigate the problem of insufficient ground truth training data, we use the transfer learning method to pre-train our deep model, exploiting the correlated quality metrics.

Experimental results using the ground truth human shortest path experiment data show that our models can successfully predict the shortest path task performance. In particular, model MSP achieves an MSE (i.e., test mean square error) of 0.7243 (i.e., data range from −17.27 to 1.81) for prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信