基于递归复值神经网络的手部运动实时识别

Manuel Alejandro Ojeda Misses, I. Baruch, Alberto López
{"title":"基于递归复值神经网络的手部运动实时识别","authors":"Manuel Alejandro Ojeda Misses, I. Baruch, Alberto López","doi":"10.1109/CCAC.2019.8920864","DOIUrl":null,"url":null,"abstract":"This paper presents an application for hand-based movements using two Recurrent Complex-Valued Neural Networks (RCVNN) in real-time. The proposed system identifies hand-based movements using two angles of human arm model acquired by the infrared vision time of flight depth system integrated in Kinect v2. The results of the experiments compare the performance of the RCVNN with the inverse kinematic. Finally, this topology helps us to identify hand-based movements avoiding singularities.","PeriodicalId":184764,"journal":{"name":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real-time identification for hand-based movements using Recurrent Complex-Valued Neural Networks\",\"authors\":\"Manuel Alejandro Ojeda Misses, I. Baruch, Alberto López\",\"doi\":\"10.1109/CCAC.2019.8920864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an application for hand-based movements using two Recurrent Complex-Valued Neural Networks (RCVNN) in real-time. The proposed system identifies hand-based movements using two angles of human arm model acquired by the infrared vision time of flight depth system integrated in Kinect v2. The results of the experiments compare the performance of the RCVNN with the inverse kinematic. Finally, this topology helps us to identify hand-based movements avoiding singularities.\",\"PeriodicalId\":184764,\"journal\":{\"name\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAC.2019.8920864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAC.2019.8920864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用两个递归复值神经网络(RCVNN)实时识别手部运动的方法。该系统利用Kinect v2中集成的红外视觉飞行时间深度系统获取的人体手臂模型的两个角度来识别手部运动。实验结果将RCVNN与逆运动学网络的性能进行了比较。最后,这个拓扑帮助我们识别基于手的运动,避免奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A real-time identification for hand-based movements using Recurrent Complex-Valued Neural Networks
This paper presents an application for hand-based movements using two Recurrent Complex-Valued Neural Networks (RCVNN) in real-time. The proposed system identifies hand-based movements using two angles of human arm model acquired by the infrared vision time of flight depth system integrated in Kinect v2. The results of the experiments compare the performance of the RCVNN with the inverse kinematic. Finally, this topology helps us to identify hand-based movements avoiding singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信