{"title":"按需弹性容量规划,实现业务自动扩展","authors":"P. Chuprikov, S. Nikolenko, Kirill Kogan","doi":"10.1109/INFOCOM.2016.7524616","DOIUrl":null,"url":null,"abstract":"Cloud computing allows on demand elastic service scaling. The capability of a service to predict resource requirements for the next operational period defines how well it will exploit the elasticity of cloud computing in order to reduce operational costs. In this work, we consider a capacity planning process for service scale-out as an online pricing model. In particular, we study the impact of buffering service requests on revenues in various settings with allocation and maintenance costs. In addition, we analyze the incurred latency implied by buffering service requests. We believe that our insights will allow to significantly simplify predictions and mitigate the unknowns of future demands on resources.","PeriodicalId":274591,"journal":{"name":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On demand elastic capacity planning for service auto-scaling\",\"authors\":\"P. Chuprikov, S. Nikolenko, Kirill Kogan\",\"doi\":\"10.1109/INFOCOM.2016.7524616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing allows on demand elastic service scaling. The capability of a service to predict resource requirements for the next operational period defines how well it will exploit the elasticity of cloud computing in order to reduce operational costs. In this work, we consider a capacity planning process for service scale-out as an online pricing model. In particular, we study the impact of buffering service requests on revenues in various settings with allocation and maintenance costs. In addition, we analyze the incurred latency implied by buffering service requests. We believe that our insights will allow to significantly simplify predictions and mitigate the unknowns of future demands on resources.\",\"PeriodicalId\":274591,\"journal\":{\"name\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2016.7524616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2016.7524616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On demand elastic capacity planning for service auto-scaling
Cloud computing allows on demand elastic service scaling. The capability of a service to predict resource requirements for the next operational period defines how well it will exploit the elasticity of cloud computing in order to reduce operational costs. In this work, we consider a capacity planning process for service scale-out as an online pricing model. In particular, we study the impact of buffering service requests on revenues in various settings with allocation and maintenance costs. In addition, we analyze the incurred latency implied by buffering service requests. We believe that our insights will allow to significantly simplify predictions and mitigate the unknowns of future demands on resources.