操作风险数据的加权似然估计:通过鲁棒化最大似然估计提高资本估计的准确性

A. Colombo, A. Lazzarini, Silvia Mongelluzzo
{"title":"操作风险数据的加权似然估计:通过鲁棒化最大似然估计提高资本估计的准确性","authors":"A. Colombo, A. Lazzarini, Silvia Mongelluzzo","doi":"10.21314/JOP.2015.164","DOIUrl":null,"url":null,"abstract":"Severity parameters play a crucial role in the operational risk (OpRisk) capital estimates for Advanced Measurement Approach banks. When relying on maximum likelihood estimates (MLEs), nonrobustness to small deviations from the standard regularity conditions and to the inclusion of single data points challenges the stability of the capital estimates severely. We propose the use of a robust generalization of MLEs for the modeling of operational loss data. The weighted likelihood estimator we propose is a special case of the estimator developed by Choi, Hall and Presnel in 2000, and it is robust yet still consistent and efficient.We describe its basic features, discussing its main theoretical properties and how to calibrate the estimation procedure. Finally, using both simulation studies and real data, we show how use of the weighted likelihood estimator can improve the stability of OpRisk capital estimates. The proposed approach generally allows one to reduce the upward capital bias and to obtain capital estimates that are more stable under contamination or with isolated data.","PeriodicalId":187811,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Weighted Likelihood Estimator for Operational Risk Data: Improving the Accuracy of Capital Estimates by Robustifying Maximum Likelihood Estimates\",\"authors\":\"A. Colombo, A. Lazzarini, Silvia Mongelluzzo\",\"doi\":\"10.21314/JOP.2015.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severity parameters play a crucial role in the operational risk (OpRisk) capital estimates for Advanced Measurement Approach banks. When relying on maximum likelihood estimates (MLEs), nonrobustness to small deviations from the standard regularity conditions and to the inclusion of single data points challenges the stability of the capital estimates severely. We propose the use of a robust generalization of MLEs for the modeling of operational loss data. The weighted likelihood estimator we propose is a special case of the estimator developed by Choi, Hall and Presnel in 2000, and it is robust yet still consistent and efficient.We describe its basic features, discussing its main theoretical properties and how to calibrate the estimation procedure. Finally, using both simulation studies and real data, we show how use of the weighted likelihood estimator can improve the stability of OpRisk capital estimates. The proposed approach generally allows one to reduce the upward capital bias and to obtain capital estimates that are more stable under contamination or with isolated data.\",\"PeriodicalId\":187811,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21314/JOP.2015.164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOP.2015.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

严重性参数在操作风险(OpRisk)资本估算中起着至关重要的作用。当依赖最大似然估计(MLEs)时,对标准规则条件的小偏差和单数据点的包含的非鲁棒性严重挑战了资本估计的稳定性。我们建议使用MLEs的鲁棒泛化来建模操作损失数据。我们提出的加权似然估计是Choi, Hall和Presnel在2000年开发的估计的一个特例,它是鲁棒的,但仍然是一致的和有效的。我们描述了它的基本特征,讨论了它的主要理论性质以及如何校准估计程序。最后,通过模拟研究和实际数据,我们展示了加权似然估计器的使用如何提高OpRisk资本估计的稳定性。所提出的方法通常允许人们减少向上的资本偏差,并获得在污染或孤立数据下更稳定的资本估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Weighted Likelihood Estimator for Operational Risk Data: Improving the Accuracy of Capital Estimates by Robustifying Maximum Likelihood Estimates
Severity parameters play a crucial role in the operational risk (OpRisk) capital estimates for Advanced Measurement Approach banks. When relying on maximum likelihood estimates (MLEs), nonrobustness to small deviations from the standard regularity conditions and to the inclusion of single data points challenges the stability of the capital estimates severely. We propose the use of a robust generalization of MLEs for the modeling of operational loss data. The weighted likelihood estimator we propose is a special case of the estimator developed by Choi, Hall and Presnel in 2000, and it is robust yet still consistent and efficient.We describe its basic features, discussing its main theoretical properties and how to calibrate the estimation procedure. Finally, using both simulation studies and real data, we show how use of the weighted likelihood estimator can improve the stability of OpRisk capital estimates. The proposed approach generally allows one to reduce the upward capital bias and to obtain capital estimates that are more stable under contamination or with isolated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信