Shiqi Gong, C. Xing, Sheng Chen, Nan Yang, Yiqing Zhou
{"title":"双极化多用户MIMO下行链路鲁棒节能预编码优化","authors":"Shiqi Gong, C. Xing, Sheng Chen, Nan Yang, Yiqing Zhou","doi":"10.1109/ICCChina.2017.8330371","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the robust fairness-based energy efficiency (EE) optimization of the dual-polarized multiuser multiple-input multiple-output (MIMO) downlink. Exploiting the special dual-polarized antenna structure, the polarization-based subgrouping technique is adopted which enjoys low implementation complexity, low feedback overhead and good performance. Based on this, the proposed robust fairness-based EE precoding design aims at maximizing the minimum EE, i.e., the worst-case EE, achieved among all users with the norm bounded channel errors. Further, the formulated nonconvex EE optimization problem is transformed into a series of standard semidefinite programming (SDP) problems, which can be effectively solved by the convex optimization techinique. Simulation results demonstrate the robust EE performance advantages of the proposed polarization-based subgrouping precoding scheme.","PeriodicalId":418396,"journal":{"name":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust energy-efficient precoding optimization for dual-polarized multiuser MIMO downlink\",\"authors\":\"Shiqi Gong, C. Xing, Sheng Chen, Nan Yang, Yiqing Zhou\",\"doi\":\"10.1109/ICCChina.2017.8330371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the robust fairness-based energy efficiency (EE) optimization of the dual-polarized multiuser multiple-input multiple-output (MIMO) downlink. Exploiting the special dual-polarized antenna structure, the polarization-based subgrouping technique is adopted which enjoys low implementation complexity, low feedback overhead and good performance. Based on this, the proposed robust fairness-based EE precoding design aims at maximizing the minimum EE, i.e., the worst-case EE, achieved among all users with the norm bounded channel errors. Further, the formulated nonconvex EE optimization problem is transformed into a series of standard semidefinite programming (SDP) problems, which can be effectively solved by the convex optimization techinique. Simulation results demonstrate the robust EE performance advantages of the proposed polarization-based subgrouping precoding scheme.\",\"PeriodicalId\":418396,\"journal\":{\"name\":\"2017 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChina.2017.8330371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2017.8330371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust energy-efficient precoding optimization for dual-polarized multiuser MIMO downlink
In this paper, we investigate the robust fairness-based energy efficiency (EE) optimization of the dual-polarized multiuser multiple-input multiple-output (MIMO) downlink. Exploiting the special dual-polarized antenna structure, the polarization-based subgrouping technique is adopted which enjoys low implementation complexity, low feedback overhead and good performance. Based on this, the proposed robust fairness-based EE precoding design aims at maximizing the minimum EE, i.e., the worst-case EE, achieved among all users with the norm bounded channel errors. Further, the formulated nonconvex EE optimization problem is transformed into a series of standard semidefinite programming (SDP) problems, which can be effectively solved by the convex optimization techinique. Simulation results demonstrate the robust EE performance advantages of the proposed polarization-based subgrouping precoding scheme.