Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G Honavar
{"title":"无监督多视图特征选择的自适应结构协正则化","authors":"Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G Honavar","doi":"10.1109/ICBK.2019.00020","DOIUrl":null,"url":null,"abstract":"With the advent of big data, there is an urgent need for methods and tools for integrative analyses of multi-modal or multi-view data. Of particular interest are unsupervised methods for parsimonious selection of non-redundant, complementary, and information-rich features from multi-view data. We introduce Adaptive Structural Co-Regularization Algorithm (ASCRA) for unsupervised multi-view feature selection. ASCRA jointly optimizes the embeddings of the different views so as to maximize their agreement with a consensus embedding which aims to simultaneously recover the latent cluster structure in the multi-view data while accounting for correlations between views. ASCRA uses the consensus embedding to guide efficient selection of features that preserve the latent cluster structure of the multi-view data. We establish ASCRA's convergence properties and analyze its computational complexity. The results of our experiments using several real-world and synthetic data sets suggest that ASCRA outperforms or is competitive with state-of-the-art unsupervised multi-view feature selection methods.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection\",\"authors\":\"Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G Honavar\",\"doi\":\"10.1109/ICBK.2019.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of big data, there is an urgent need for methods and tools for integrative analyses of multi-modal or multi-view data. Of particular interest are unsupervised methods for parsimonious selection of non-redundant, complementary, and information-rich features from multi-view data. We introduce Adaptive Structural Co-Regularization Algorithm (ASCRA) for unsupervised multi-view feature selection. ASCRA jointly optimizes the embeddings of the different views so as to maximize their agreement with a consensus embedding which aims to simultaneously recover the latent cluster structure in the multi-view data while accounting for correlations between views. ASCRA uses the consensus embedding to guide efficient selection of features that preserve the latent cluster structure of the multi-view data. We establish ASCRA's convergence properties and analyze its computational complexity. The results of our experiments using several real-world and synthetic data sets suggest that ASCRA outperforms or is competitive with state-of-the-art unsupervised multi-view feature selection methods.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection
With the advent of big data, there is an urgent need for methods and tools for integrative analyses of multi-modal or multi-view data. Of particular interest are unsupervised methods for parsimonious selection of non-redundant, complementary, and information-rich features from multi-view data. We introduce Adaptive Structural Co-Regularization Algorithm (ASCRA) for unsupervised multi-view feature selection. ASCRA jointly optimizes the embeddings of the different views so as to maximize their agreement with a consensus embedding which aims to simultaneously recover the latent cluster structure in the multi-view data while accounting for correlations between views. ASCRA uses the consensus embedding to guide efficient selection of features that preserve the latent cluster structure of the multi-view data. We establish ASCRA's convergence properties and analyze its computational complexity. The results of our experiments using several real-world and synthetic data sets suggest that ASCRA outperforms or is competitive with state-of-the-art unsupervised multi-view feature selection methods.