无监督多视图特征选择的自适应结构协正则化

Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G Honavar
{"title":"无监督多视图特征选择的自适应结构协正则化","authors":"Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G Honavar","doi":"10.1109/ICBK.2019.00020","DOIUrl":null,"url":null,"abstract":"With the advent of big data, there is an urgent need for methods and tools for integrative analyses of multi-modal or multi-view data. Of particular interest are unsupervised methods for parsimonious selection of non-redundant, complementary, and information-rich features from multi-view data. We introduce Adaptive Structural Co-Regularization Algorithm (ASCRA) for unsupervised multi-view feature selection. ASCRA jointly optimizes the embeddings of the different views so as to maximize their agreement with a consensus embedding which aims to simultaneously recover the latent cluster structure in the multi-view data while accounting for correlations between views. ASCRA uses the consensus embedding to guide efficient selection of features that preserve the latent cluster structure of the multi-view data. We establish ASCRA's convergence properties and analyze its computational complexity. The results of our experiments using several real-world and synthetic data sets suggest that ASCRA outperforms or is competitive with state-of-the-art unsupervised multi-view feature selection methods.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection\",\"authors\":\"Tsung-Yu Hsieh, Yiwei Sun, Suhang Wang, Vasant G Honavar\",\"doi\":\"10.1109/ICBK.2019.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of big data, there is an urgent need for methods and tools for integrative analyses of multi-modal or multi-view data. Of particular interest are unsupervised methods for parsimonious selection of non-redundant, complementary, and information-rich features from multi-view data. We introduce Adaptive Structural Co-Regularization Algorithm (ASCRA) for unsupervised multi-view feature selection. ASCRA jointly optimizes the embeddings of the different views so as to maximize their agreement with a consensus embedding which aims to simultaneously recover the latent cluster structure in the multi-view data while accounting for correlations between views. ASCRA uses the consensus embedding to guide efficient selection of features that preserve the latent cluster structure of the multi-view data. We establish ASCRA's convergence properties and analyze its computational complexity. The results of our experiments using several real-world and synthetic data sets suggest that ASCRA outperforms or is competitive with state-of-the-art unsupervised multi-view feature selection methods.\",\"PeriodicalId\":383917,\"journal\":{\"name\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2019.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着大数据时代的到来,迫切需要对多模态或多视图数据进行集成分析的方法和工具。特别令人感兴趣的是从多视图数据中简化选择非冗余、互补和信息丰富的特征的无监督方法。提出了一种用于无监督多视图特征选择的自适应结构协正则化算法(ASCRA)。ASCRA对不同视图的嵌入进行联合优化,使它们的一致性最大化,形成共识嵌入,目的是在考虑视图之间的相关性的同时恢复多视图数据中的潜在聚类结构。ASCRA使用共识嵌入来指导有效的特征选择,以保持多视图数据的潜在聚类结构。建立了ASCRA的收敛性,分析了其计算复杂度。我们使用几个真实世界和合成数据集的实验结果表明,ASCRA优于最先进的无监督多视图特征选择方法或具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Structural Co-regularization for Unsupervised Multi-view Feature Selection
With the advent of big data, there is an urgent need for methods and tools for integrative analyses of multi-modal or multi-view data. Of particular interest are unsupervised methods for parsimonious selection of non-redundant, complementary, and information-rich features from multi-view data. We introduce Adaptive Structural Co-Regularization Algorithm (ASCRA) for unsupervised multi-view feature selection. ASCRA jointly optimizes the embeddings of the different views so as to maximize their agreement with a consensus embedding which aims to simultaneously recover the latent cluster structure in the multi-view data while accounting for correlations between views. ASCRA uses the consensus embedding to guide efficient selection of features that preserve the latent cluster structure of the multi-view data. We establish ASCRA's convergence properties and analyze its computational complexity. The results of our experiments using several real-world and synthetic data sets suggest that ASCRA outperforms or is competitive with state-of-the-art unsupervised multi-view feature selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信