基于卷积神经网络的手势识别

Shengchang Lan, Zonglong He, Weichu Chen, Lijia Chen
{"title":"基于卷积神经网络的手势识别","authors":"Shengchang Lan, Zonglong He, Weichu Chen, Lijia Chen","doi":"10.1109/USNC-URSI.2018.8602809","DOIUrl":null,"url":null,"abstract":"This paper introduced a hand gesture recognition method based on convolutional neural networks (CNNs). The recognition scenario consisted in a three dimensional radar array to transmit and receive 24GHz continuous electromagnetic (EM) wave, and convert the scattered EM wave to the intermediate frequency (IF) signals. This paper used the the processed frequency spectrum as the input to the CNN. Then the CNN feature detection layer learned through data training, avoiding supervised feature extraction while learning implicitly from training data. It highlighted these features through convolution operating, pooling and a softmax function. Results showed that this system could achieve a high recognition accuracy rate higher than 96%.","PeriodicalId":203781,"journal":{"name":"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hand Gesture Recognition Using Convolutional Neural Networks\",\"authors\":\"Shengchang Lan, Zonglong He, Weichu Chen, Lijia Chen\",\"doi\":\"10.1109/USNC-URSI.2018.8602809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduced a hand gesture recognition method based on convolutional neural networks (CNNs). The recognition scenario consisted in a three dimensional radar array to transmit and receive 24GHz continuous electromagnetic (EM) wave, and convert the scattered EM wave to the intermediate frequency (IF) signals. This paper used the the processed frequency spectrum as the input to the CNN. Then the CNN feature detection layer learned through data training, avoiding supervised feature extraction while learning implicitly from training data. It highlighted these features through convolution operating, pooling and a softmax function. Results showed that this system could achieve a high recognition accuracy rate higher than 96%.\",\"PeriodicalId\":203781,\"journal\":{\"name\":\"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USNC-URSI.2018.8602809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI.2018.8602809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种基于卷积神经网络(cnn)的手势识别方法。识别场景为三维雷达阵列,发射和接收24GHz连续电磁波,并将散射电磁波转换为中频信号。本文将处理后的频谱作为CNN的输入。然后CNN特征检测层通过数据训练学习,避免了有监督的特征提取,同时从训练数据中隐式学习。它通过卷积操作、池化和softmax函数突出了这些特性。结果表明,该系统的识别准确率达到96%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Gesture Recognition Using Convolutional Neural Networks
This paper introduced a hand gesture recognition method based on convolutional neural networks (CNNs). The recognition scenario consisted in a three dimensional radar array to transmit and receive 24GHz continuous electromagnetic (EM) wave, and convert the scattered EM wave to the intermediate frequency (IF) signals. This paper used the the processed frequency spectrum as the input to the CNN. Then the CNN feature detection layer learned through data training, avoiding supervised feature extraction while learning implicitly from training data. It highlighted these features through convolution operating, pooling and a softmax function. Results showed that this system could achieve a high recognition accuracy rate higher than 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信