{"title":"量子密钥分发系统中光子脉冲检测算法的特点","authors":"A. Pljonkin","doi":"10.1145/3058060.3058078","DOIUrl":null,"url":null,"abstract":"A two-pass fiber-optic quantum key distribution system with phase-encoded photon states in synchronization mode has been investigated. The possibility of applying the analytical expressions for the calculation of the correct detection probability of the signal time window at synchronization has been proved. A modernized algorithm of photon pulse detection, taking into account the dead time of the single-photon avalanche photodiode was proposed. The method of engineering an optical pulse detection process during the synchronization in a quantum key distribution system has been offered.","PeriodicalId":152599,"journal":{"name":"International Conference on Cryptography, Security and Privacy","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Features of the Photon Pulse Detection Algorithm in the Quantum Key Distribution System\",\"authors\":\"A. Pljonkin\",\"doi\":\"10.1145/3058060.3058078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-pass fiber-optic quantum key distribution system with phase-encoded photon states in synchronization mode has been investigated. The possibility of applying the analytical expressions for the calculation of the correct detection probability of the signal time window at synchronization has been proved. A modernized algorithm of photon pulse detection, taking into account the dead time of the single-photon avalanche photodiode was proposed. The method of engineering an optical pulse detection process during the synchronization in a quantum key distribution system has been offered.\",\"PeriodicalId\":152599,\"journal\":{\"name\":\"International Conference on Cryptography, Security and Privacy\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Cryptography, Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3058060.3058078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Cryptography, Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3058060.3058078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Features of the Photon Pulse Detection Algorithm in the Quantum Key Distribution System
A two-pass fiber-optic quantum key distribution system with phase-encoded photon states in synchronization mode has been investigated. The possibility of applying the analytical expressions for the calculation of the correct detection probability of the signal time window at synchronization has been proved. A modernized algorithm of photon pulse detection, taking into account the dead time of the single-photon avalanche photodiode was proposed. The method of engineering an optical pulse detection process during the synchronization in a quantum key distribution system has been offered.