{"title":"一种混合式电磁兼容测试设备:传输线与混响室相结合的测量系统","authors":"Kai Chen, Wenjun Qi, Peng Peng, Hailong Wang, Xueqi Shen, Yongjiu Zhao, Qian Xu","doi":"10.13052/2023.aces.j.380103","DOIUrl":null,"url":null,"abstract":"By combining a transmission line system (TLS) and a reverberation chamber (RC), a hybrid electromagnetic compatibility (EMC) testing facility is designed and constructed. Generally, the lowest usable frequency (LUF) of an RC is limited by its dimension, which limits the application of RCs for EMC testing at low frequencies. Therefore, to improve the field uniformity (FU) of an RC at frequencies lower than the LUF, a TLS is integrated into the RC. After optimizing the load resistance, length, and width of the TLS, the resonant frequency and electric field spikes of the hybrid system are eliminated. The FU of the E-field in the system is greatly improved in the frequency range of 0-30 MHz. Moreover, using an oscillating wall stirrer in the RC, the FU satisfies the standard (IEC 61000-4-21) above 80 MHz. Results show that combining the TLS and the RC testing system could be widely used for EMC testing in the frequency range of 0-30 MHz and 80 MHz-6 GHz.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid EMC Testing Facility: Combining Transmission Line and Reverberation Chamber Measurement System\",\"authors\":\"Kai Chen, Wenjun Qi, Peng Peng, Hailong Wang, Xueqi Shen, Yongjiu Zhao, Qian Xu\",\"doi\":\"10.13052/2023.aces.j.380103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By combining a transmission line system (TLS) and a reverberation chamber (RC), a hybrid electromagnetic compatibility (EMC) testing facility is designed and constructed. Generally, the lowest usable frequency (LUF) of an RC is limited by its dimension, which limits the application of RCs for EMC testing at low frequencies. Therefore, to improve the field uniformity (FU) of an RC at frequencies lower than the LUF, a TLS is integrated into the RC. After optimizing the load resistance, length, and width of the TLS, the resonant frequency and electric field spikes of the hybrid system are eliminated. The FU of the E-field in the system is greatly improved in the frequency range of 0-30 MHz. Moreover, using an oscillating wall stirrer in the RC, the FU satisfies the standard (IEC 61000-4-21) above 80 MHz. Results show that combining the TLS and the RC testing system could be widely used for EMC testing in the frequency range of 0-30 MHz and 80 MHz-6 GHz.\",\"PeriodicalId\":250668,\"journal\":{\"name\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.380103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid EMC Testing Facility: Combining Transmission Line and Reverberation Chamber Measurement System
By combining a transmission line system (TLS) and a reverberation chamber (RC), a hybrid electromagnetic compatibility (EMC) testing facility is designed and constructed. Generally, the lowest usable frequency (LUF) of an RC is limited by its dimension, which limits the application of RCs for EMC testing at low frequencies. Therefore, to improve the field uniformity (FU) of an RC at frequencies lower than the LUF, a TLS is integrated into the RC. After optimizing the load resistance, length, and width of the TLS, the resonant frequency and electric field spikes of the hybrid system are eliminated. The FU of the E-field in the system is greatly improved in the frequency range of 0-30 MHz. Moreover, using an oscillating wall stirrer in the RC, the FU satisfies the standard (IEC 61000-4-21) above 80 MHz. Results show that combining the TLS and the RC testing system could be widely used for EMC testing in the frequency range of 0-30 MHz and 80 MHz-6 GHz.