基于NLDIW-PSO的最优支持向量回归的水质数据清洗框架

Jianzhuo Yan, Xinyue Chen, Yongchuan Yu
{"title":"基于NLDIW-PSO的最优支持向量回归的水质数据清洗框架","authors":"Jianzhuo Yan, Xinyue Chen, Yongchuan Yu","doi":"10.1109/WI.2018.00-71","DOIUrl":null,"url":null,"abstract":"Water quality monitoring is an essential part of water big data analysis. Spatiotemporal variations of water quality and constraints on measurement make it very complex. The objective of this study is to establish a water quality data cleaning framework based on time series, in order to clean the water quality data of the Gaobeidian Sewage Treatment Plant inlet in Beijing. Pauta criterion was used to deal with single water quality indicator. For abnormal values and missing values that are discontinuously distributed over time, the average of the non-abnormal data for three days before and after was used to fill it; For abnormal values and missing values that are continuously distributed over time, using the Non-Linear decreasing inertia weight particle swarm algorithm (NLDIW-PSO) based optimal Support Vector Regression (SVR) to forecast. And Pearson's correlation coefficient was used to reduce the dimension of the inputs of the model, k-fold cross validation was also used to train the model. The performance of the model was evaluated in terms of the coefficient of determination (R2), Pearson's correlation coefficient. Water quality data of Gaobeidian wastewater treatment inlet in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP ANN, Bayesian network model and Decision Tree model. And this framework can be used as an effective approach to deal with General time series data.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Data Cleaning Framework for Water Quality Based on NLDIW-PSO Based Optimal SVR\",\"authors\":\"Jianzhuo Yan, Xinyue Chen, Yongchuan Yu\",\"doi\":\"10.1109/WI.2018.00-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water quality monitoring is an essential part of water big data analysis. Spatiotemporal variations of water quality and constraints on measurement make it very complex. The objective of this study is to establish a water quality data cleaning framework based on time series, in order to clean the water quality data of the Gaobeidian Sewage Treatment Plant inlet in Beijing. Pauta criterion was used to deal with single water quality indicator. For abnormal values and missing values that are discontinuously distributed over time, the average of the non-abnormal data for three days before and after was used to fill it; For abnormal values and missing values that are continuously distributed over time, using the Non-Linear decreasing inertia weight particle swarm algorithm (NLDIW-PSO) based optimal Support Vector Regression (SVR) to forecast. And Pearson's correlation coefficient was used to reduce the dimension of the inputs of the model, k-fold cross validation was also used to train the model. The performance of the model was evaluated in terms of the coefficient of determination (R2), Pearson's correlation coefficient. Water quality data of Gaobeidian wastewater treatment inlet in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP ANN, Bayesian network model and Decision Tree model. And this framework can be used as an effective approach to deal with General time series data.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

水质监测是水大数据分析的重要组成部分。水质的时空变化和测量限制使其非常复杂。本研究旨在建立基于时间序列的水质数据清洗框架,对北京市高碑店污水处理厂进水口水质数据进行清洗。采用Pauta准则处理单一水质指标。对于随时间不连续分布的异常值和缺失值,采用前后三天非异常数据的平均值进行填充;对于随时间连续分布的异常值和缺失值,采用基于非线性递减惯性权粒子群算法(NLDIW-PSO)的最优支持向量回归(SVR)进行预测。并采用Pearson相关系数对模型输入进行降维,采用k-fold交叉验证对模型进行训练。采用决定系数(R2)、Pearson相关系数对模型的性能进行评价。以北京市高碑店污水处理站水质数据为例,验证了该方法的有效性。实验结果还表明,与传统BP神经网络模型、贝叶斯网络模型和决策树模型等数据驱动模型相比,该模型具有稳定性和缩短时间的优点。该框架可以作为处理一般时间序列数据的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data Cleaning Framework for Water Quality Based on NLDIW-PSO Based Optimal SVR
Water quality monitoring is an essential part of water big data analysis. Spatiotemporal variations of water quality and constraints on measurement make it very complex. The objective of this study is to establish a water quality data cleaning framework based on time series, in order to clean the water quality data of the Gaobeidian Sewage Treatment Plant inlet in Beijing. Pauta criterion was used to deal with single water quality indicator. For abnormal values and missing values that are discontinuously distributed over time, the average of the non-abnormal data for three days before and after was used to fill it; For abnormal values and missing values that are continuously distributed over time, using the Non-Linear decreasing inertia weight particle swarm algorithm (NLDIW-PSO) based optimal Support Vector Regression (SVR) to forecast. And Pearson's correlation coefficient was used to reduce the dimension of the inputs of the model, k-fold cross validation was also used to train the model. The performance of the model was evaluated in terms of the coefficient of determination (R2), Pearson's correlation coefficient. Water quality data of Gaobeidian wastewater treatment inlet in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP ANN, Bayesian network model and Decision Tree model. And this framework can be used as an effective approach to deal with General time series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信