支持向量机分析

S. Abe
{"title":"支持向量机分析","authors":"S. Abe","doi":"10.1109/NNSP.2002.1030020","DOIUrl":null,"url":null,"abstract":"We compare L1 and L2 soft margin support vector machines from the standpoint of positive definiteness, the number of support vectors, and uniqueness and degeneracy of solutions. Since the Hessian matrix of L2 SVM is positive definite, the number of support vectors for L2 SVM is larger than or equal to the number of L1 SVM. For L1 SVM, if there are plural irreducible sets of support vectors, the solution of the dual problem is non-unique although the primal problem is unique. Similar to L1 SVM, degenerate solutions, in which all the data are classified into one class, occur for L2 SVM.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Analysis of support vector machines\",\"authors\":\"S. Abe\",\"doi\":\"10.1109/NNSP.2002.1030020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare L1 and L2 soft margin support vector machines from the standpoint of positive definiteness, the number of support vectors, and uniqueness and degeneracy of solutions. Since the Hessian matrix of L2 SVM is positive definite, the number of support vectors for L2 SVM is larger than or equal to the number of L1 SVM. For L1 SVM, if there are plural irreducible sets of support vectors, the solution of the dual problem is non-unique although the primal problem is unique. Similar to L1 SVM, degenerate solutions, in which all the data are classified into one class, occur for L2 SVM.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们从正定性、支持向量的数量、解的唯一性和退化性等方面比较了L1和L2软裕度支持向量机。由于L2支持向量机的Hessian矩阵是正定的,所以L2支持向量机的支持向量个数大于等于L1支持向量机的支持向量个数。对于L1支持向量机,如果存在多个不可约的支持向量集,则对偶问题的解是非唯一的,尽管原始问题是唯一的。与L1支持向量机类似,L2支持向量机也存在退化解,即所有数据都归为一类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of support vector machines
We compare L1 and L2 soft margin support vector machines from the standpoint of positive definiteness, the number of support vectors, and uniqueness and degeneracy of solutions. Since the Hessian matrix of L2 SVM is positive definite, the number of support vectors for L2 SVM is larger than or equal to the number of L1 SVM. For L1 SVM, if there are plural irreducible sets of support vectors, the solution of the dual problem is non-unique although the primal problem is unique. Similar to L1 SVM, degenerate solutions, in which all the data are classified into one class, occur for L2 SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信