{"title":"基于机器人技术的灾害垃圾处理路径规划","authors":"T. Takeda, Y. Mori, N. Kubota, Y. Arai","doi":"10.1109/RIISS.2014.7009173","DOIUrl":null,"url":null,"abstract":"This paper describes a transportation management system for disaster wastes to support early recovery from great the effect of earthquakes and other natural disasters. The system consists of a route selection process and a waste allocation process. For the system, the simplification map is made from arterial roads, temporally storage yards and disposal facilities. And, a directed graph with traveling times and transportation distances of adjacent nodes was generated from the simplification map. The route selection process calculates path length between all pairs of nodes by Warshall-Floyd algorithm. The allocation process decides transportation amount for each disposal facility by linear programming method. In the experiment, we confirm our method is able to manage waste transportation by using a map that simulated south Tokyo. Our system selected the shortest route from a disaster waste source to the nearest disposal facility with related to traffic conditions. The system allocated simulated disaster wastes for the facilities in proper quantities.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A route planning for disaster waste disposal based on robot technology\",\"authors\":\"T. Takeda, Y. Mori, N. Kubota, Y. Arai\",\"doi\":\"10.1109/RIISS.2014.7009173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a transportation management system for disaster wastes to support early recovery from great the effect of earthquakes and other natural disasters. The system consists of a route selection process and a waste allocation process. For the system, the simplification map is made from arterial roads, temporally storage yards and disposal facilities. And, a directed graph with traveling times and transportation distances of adjacent nodes was generated from the simplification map. The route selection process calculates path length between all pairs of nodes by Warshall-Floyd algorithm. The allocation process decides transportation amount for each disposal facility by linear programming method. In the experiment, we confirm our method is able to manage waste transportation by using a map that simulated south Tokyo. Our system selected the shortest route from a disaster waste source to the nearest disposal facility with related to traffic conditions. The system allocated simulated disaster wastes for the facilities in proper quantities.\",\"PeriodicalId\":270157,\"journal\":{\"name\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIISS.2014.7009173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A route planning for disaster waste disposal based on robot technology
This paper describes a transportation management system for disaster wastes to support early recovery from great the effect of earthquakes and other natural disasters. The system consists of a route selection process and a waste allocation process. For the system, the simplification map is made from arterial roads, temporally storage yards and disposal facilities. And, a directed graph with traveling times and transportation distances of adjacent nodes was generated from the simplification map. The route selection process calculates path length between all pairs of nodes by Warshall-Floyd algorithm. The allocation process decides transportation amount for each disposal facility by linear programming method. In the experiment, we confirm our method is able to manage waste transportation by using a map that simulated south Tokyo. Our system selected the shortest route from a disaster waste source to the nearest disposal facility with related to traffic conditions. The system allocated simulated disaster wastes for the facilities in proper quantities.