利用四叉树分解对原子图像进行分形压缩

Hasanujjaman, Arnab Banerjee, U. Biswas, M. Naskar
{"title":"利用四叉树分解对原子图像进行分形压缩","authors":"Hasanujjaman, Arnab Banerjee, U. Biswas, M. Naskar","doi":"10.1109/DEVIC.2019.8783961","DOIUrl":null,"url":null,"abstract":"Researchers have made several efforts towards reduction of Compression ratio and improvement of PSNR of an image compressing algorithm. However little attention has been given to reduce the time complexity of the same except for few hardware approaches. In this particular work, a mystical atomic image was created, through the process of splitting the main image into two different blocks. Atomic image was formed by strategically calculating the significant bits from even and odd portion of the original image in spatial domain. Furthermore the most popular methods were implemented on atomic image for getting a lower time complexity, as well as, increased compression ratio and acceptable PSNR. As a result of application of the proposed algorithm we obtained maximum PSNR of 30.12dB for Lena Image and maximum compression ratio of 25.96 for MRI image","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fractal Image Compression of an Atomic Image using Quadtree Decomposition\",\"authors\":\"Hasanujjaman, Arnab Banerjee, U. Biswas, M. Naskar\",\"doi\":\"10.1109/DEVIC.2019.8783961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have made several efforts towards reduction of Compression ratio and improvement of PSNR of an image compressing algorithm. However little attention has been given to reduce the time complexity of the same except for few hardware approaches. In this particular work, a mystical atomic image was created, through the process of splitting the main image into two different blocks. Atomic image was formed by strategically calculating the significant bits from even and odd portion of the original image in spatial domain. Furthermore the most popular methods were implemented on atomic image for getting a lower time complexity, as well as, increased compression ratio and acceptable PSNR. As a result of application of the proposed algorithm we obtained maximum PSNR of 30.12dB for Lena Image and maximum compression ratio of 25.96 for MRI image\",\"PeriodicalId\":294095,\"journal\":{\"name\":\"2019 Devices for Integrated Circuit (DevIC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Devices for Integrated Circuit (DevIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVIC.2019.8783961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了降低压缩比和提高图像压缩算法的PSNR,研究者们做了很多努力。然而,除了一些硬件方法外,很少有人注意降低相同的时间复杂度。在这个特殊的作品中,通过将主图像分成两个不同的块的过程,创造了一个神秘的原子图像。原子图像是通过在空间域中对原图像的奇偶部分进行有效位的策略性计算而形成的。此外,最流行的方法是在原子图像上实现较低的时间复杂度,提高压缩比和可接受的PSNR。应用该算法后,Lena图像的最大PSNR为30.12dB, MRI图像的最大压缩比为25.96
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal Image Compression of an Atomic Image using Quadtree Decomposition
Researchers have made several efforts towards reduction of Compression ratio and improvement of PSNR of an image compressing algorithm. However little attention has been given to reduce the time complexity of the same except for few hardware approaches. In this particular work, a mystical atomic image was created, through the process of splitting the main image into two different blocks. Atomic image was formed by strategically calculating the significant bits from even and odd portion of the original image in spatial domain. Furthermore the most popular methods were implemented on atomic image for getting a lower time complexity, as well as, increased compression ratio and acceptable PSNR. As a result of application of the proposed algorithm we obtained maximum PSNR of 30.12dB for Lena Image and maximum compression ratio of 25.96 for MRI image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信