基于sift的图像压缩

Huanjing Yue, Xiaoyan Sun, Feng Wu, Jingyu Yang
{"title":"基于sift的图像压缩","authors":"Huanjing Yue, Xiaoyan Sun, Feng Wu, Jingyu Yang","doi":"10.1109/ICME.2012.52","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel image compression scheme based on the local feature descriptor - Scale Invariant Feature Transform (SIFT). The SIFT descriptor characterizes an image region invariantly to scale and rotation. It is used widely in image retrieval. By using SIFT descriptors, our compression scheme is able to make use of external image contents to reduce visual redundancy among images. The proposed encoder compresses an input image by SIFT descriptors rather than pixel values. It separates the SIFT descriptors of the image into two groups, a visual description which is a significantly sub sampled image with key SIFT descriptors embedded and a set of differential SIFT descriptors, to reduce the coding bits. The corresponding decoder generates the SIFT descriptors from the visual description and the differential set. The SIFT descriptors are used in our SIFT-based matching to retrieve the candidate predictive patches from a large image dataset. These candidate patches are then integrated into the visual description, presenting the final reconstructed images. Our preliminary but promising results demonstrate the effectiveness of our proposed image coding scheme towards perceptual quality. Our proposed image compression scheme provides a feasible approach to make use of the visual correlation among images.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"SIFT-Based Image Compression\",\"authors\":\"Huanjing Yue, Xiaoyan Sun, Feng Wu, Jingyu Yang\",\"doi\":\"10.1109/ICME.2012.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel image compression scheme based on the local feature descriptor - Scale Invariant Feature Transform (SIFT). The SIFT descriptor characterizes an image region invariantly to scale and rotation. It is used widely in image retrieval. By using SIFT descriptors, our compression scheme is able to make use of external image contents to reduce visual redundancy among images. The proposed encoder compresses an input image by SIFT descriptors rather than pixel values. It separates the SIFT descriptors of the image into two groups, a visual description which is a significantly sub sampled image with key SIFT descriptors embedded and a set of differential SIFT descriptors, to reduce the coding bits. The corresponding decoder generates the SIFT descriptors from the visual description and the differential set. The SIFT descriptors are used in our SIFT-based matching to retrieve the candidate predictive patches from a large image dataset. These candidate patches are then integrated into the visual description, presenting the final reconstructed images. Our preliminary but promising results demonstrate the effectiveness of our proposed image coding scheme towards perceptual quality. Our proposed image compression scheme provides a feasible approach to make use of the visual correlation among images.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提出了一种新的基于局部特征描述符的图像压缩方案——尺度不变特征变换(SIFT)。SIFT描述符对图像区域进行不变的缩放和旋转表征。在图像检索中得到了广泛的应用。通过使用SIFT描述符,我们的压缩方案能够利用外部图像内容来减少图像之间的视觉冗余。所提出的编码器通过SIFT描述符而不是像素值来压缩输入图像。它将图像的SIFT描述符分为两组,一组是嵌入关键SIFT描述符的显著次采样图像的视觉描述符,另一组是差分SIFT描述符,以减少编码位。相应的解码器从视觉描述和差分集生成SIFT描述符。SIFT描述符在基于SIFT的匹配中用于从大型图像数据集中检索候选预测补丁。然后将这些候选补丁整合到视觉描述中,呈现最终的重建图像。我们初步但有希望的结果证明了我们提出的图像编码方案对感知质量的有效性。我们提出的图像压缩方案为利用图像间的视觉相关性提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIFT-Based Image Compression
This paper proposes a novel image compression scheme based on the local feature descriptor - Scale Invariant Feature Transform (SIFT). The SIFT descriptor characterizes an image region invariantly to scale and rotation. It is used widely in image retrieval. By using SIFT descriptors, our compression scheme is able to make use of external image contents to reduce visual redundancy among images. The proposed encoder compresses an input image by SIFT descriptors rather than pixel values. It separates the SIFT descriptors of the image into two groups, a visual description which is a significantly sub sampled image with key SIFT descriptors embedded and a set of differential SIFT descriptors, to reduce the coding bits. The corresponding decoder generates the SIFT descriptors from the visual description and the differential set. The SIFT descriptors are used in our SIFT-based matching to retrieve the candidate predictive patches from a large image dataset. These candidate patches are then integrated into the visual description, presenting the final reconstructed images. Our preliminary but promising results demonstrate the effectiveness of our proposed image coding scheme towards perceptual quality. Our proposed image compression scheme provides a feasible approach to make use of the visual correlation among images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信