共识一步多视图子空间聚类(扩展摘要)

Pei Zhang, Xinwang Liu, Jian Xiong, Sihang Zhou, Wentao Zhao, En Zhu, Zhiping Cai
{"title":"共识一步多视图子空间聚类(扩展摘要)","authors":"Pei Zhang, Xinwang Liu, Jian Xiong, Sihang Zhou, Wentao Zhao, En Zhu, Zhiping Cai","doi":"10.1109/ICDE55515.2023.00307","DOIUrl":null,"url":null,"abstract":"Multi-view clustering has attracted increasing attention in data mining communities. Despite superior clustering performance, we observe that existing multi-view subspace clustering methods directly fuse multi-view information in the similarity level by merging noisy affinity matrices; and isolate the processes of affinity learning, multiple information fusion and clustering. Both factors may cause insufficient utilization of multi-view information, leading to unsatisfying clustering performance. This paper proposes a novel consensus one-step multi-view subspace clustering (COMVSC) method to address these issues. Instead of directly fusing affinity matrices, COMVSC optimally integrates discriminative partition-level information, which is helpful in eliminating noise among data. Moreover, the affinity matrices, consensus representation and final clustering labels are learned simultaneously in a unified framework. Extensive experiment results on benchmark datasets demonstrate the superiority of our method over other state-of-the-art approaches.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus One-step Multi-view Subspace Clustering (Extended abstract)\",\"authors\":\"Pei Zhang, Xinwang Liu, Jian Xiong, Sihang Zhou, Wentao Zhao, En Zhu, Zhiping Cai\",\"doi\":\"10.1109/ICDE55515.2023.00307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view clustering has attracted increasing attention in data mining communities. Despite superior clustering performance, we observe that existing multi-view subspace clustering methods directly fuse multi-view information in the similarity level by merging noisy affinity matrices; and isolate the processes of affinity learning, multiple information fusion and clustering. Both factors may cause insufficient utilization of multi-view information, leading to unsatisfying clustering performance. This paper proposes a novel consensus one-step multi-view subspace clustering (COMVSC) method to address these issues. Instead of directly fusing affinity matrices, COMVSC optimally integrates discriminative partition-level information, which is helpful in eliminating noise among data. Moreover, the affinity matrices, consensus representation and final clustering labels are learned simultaneously in a unified framework. Extensive experiment results on benchmark datasets demonstrate the superiority of our method over other state-of-the-art approaches.\",\"PeriodicalId\":434744,\"journal\":{\"name\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE55515.2023.00307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多视图聚类越来越受到数据挖掘界的关注。尽管现有的多视图子空间聚类方法具有优异的聚类性能,但我们发现,现有的多视图子空间聚类方法直接通过合并噪声亲和矩阵来融合相似水平上的多视图信息;分离了亲和学习、多信息融合和聚类过程。这两个因素都可能导致多视图信息利用率不足,导致聚类性能不理想。本文提出了一种新的共识一步多视图子空间聚类(COMVSC)方法来解决这些问题。与直接融合亲和矩阵不同,COMVSC优化整合了判别性分区级信息,有助于消除数据间的噪声。此外,在一个统一的框架中同时学习亲和矩阵、一致性表示和最终的聚类标签。在基准数据集上的大量实验结果表明,我们的方法优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus One-step Multi-view Subspace Clustering (Extended abstract)
Multi-view clustering has attracted increasing attention in data mining communities. Despite superior clustering performance, we observe that existing multi-view subspace clustering methods directly fuse multi-view information in the similarity level by merging noisy affinity matrices; and isolate the processes of affinity learning, multiple information fusion and clustering. Both factors may cause insufficient utilization of multi-view information, leading to unsatisfying clustering performance. This paper proposes a novel consensus one-step multi-view subspace clustering (COMVSC) method to address these issues. Instead of directly fusing affinity matrices, COMVSC optimally integrates discriminative partition-level information, which is helpful in eliminating noise among data. Moreover, the affinity matrices, consensus representation and final clustering labels are learned simultaneously in a unified framework. Extensive experiment results on benchmark datasets demonstrate the superiority of our method over other state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信