{"title":"通过自动问答和意图检测的基于对话框的帮助台","authors":"A. Uva, Pierluigi Roberti, Alessandro Moschitti","doi":"10.4000/books.aaccademia.8945","DOIUrl":null,"url":null,"abstract":"Modern personal assistants require to access unstructured information in order to successfully fulfill user requests. In this paper, we have studied the use of two machine learning components to design personal assistants: intent classification, to understand the user request, and answer sentence selection, to carry out question answering from unstructured text. The evaluation results derived on five different real-world datasets, associated with different companies, show high accuracy for both tasks. This suggests that modern QA and dialog technology is effective for real-world tasks. I moderni personal assistant richiedono di accedere ad informazioni non strutturate per soddisfare con successo le richieste degli utenti. In questo articolo, abbiamo studiato l’uso dell’ apprendimento automatico per progettare due componenti di un personal assistant: classificazione degli intenti, per comprendere la richiesta dell’utente, e la selezione della frase di risposta per rispondere alle domande con testo non strutturato. I risultati della valutazione derivati da cinque diversi datasets del mondo reale, associati a diverse società, mostrano un’elevata precisione per entrambi i modelli. Ciò suggerisce che la moderna tecnologia di question answering e dialogo è efficace per attività reali.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dialog-based Help Desk through Automated Question Answering and Intent Detection\",\"authors\":\"A. Uva, Pierluigi Roberti, Alessandro Moschitti\",\"doi\":\"10.4000/books.aaccademia.8945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern personal assistants require to access unstructured information in order to successfully fulfill user requests. In this paper, we have studied the use of two machine learning components to design personal assistants: intent classification, to understand the user request, and answer sentence selection, to carry out question answering from unstructured text. The evaluation results derived on five different real-world datasets, associated with different companies, show high accuracy for both tasks. This suggests that modern QA and dialog technology is effective for real-world tasks. I moderni personal assistant richiedono di accedere ad informazioni non strutturate per soddisfare con successo le richieste degli utenti. In questo articolo, abbiamo studiato l’uso dell’ apprendimento automatico per progettare due componenti di un personal assistant: classificazione degli intenti, per comprendere la richiesta dell’utente, e la selezione della frase di risposta per rispondere alle domande con testo non strutturato. I risultati della valutazione derivati da cinque diversi datasets del mondo reale, associati a diverse società, mostrano un’elevata precisione per entrambi i modelli. Ciò suggerisce che la moderna tecnologia di question answering e dialogo è efficace per attività reali.\",\"PeriodicalId\":300279,\"journal\":{\"name\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/books.aaccademia.8945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
现代个人助理需要访问非结构化信息才能成功地满足用户的请求。在本文中,我们研究了使用两个机器学习组件来设计个人助理:意图分类,理解用户请求,以及回答句子选择,从非结构化文本中进行问题回答。评估结果来源于五个不同的真实世界数据集,这些数据集与不同的公司有关,对这两个任务都显示出很高的准确性。这表明现代QA和对话技术对于现实世界的任务是有效的。在现代个人助理中,富人和非结构化的信息服务成功地取代了富人和非结构化的人。就文章而言,abbiamo studioto ' uso dell '学徒to automatiatiper program .由于组件和个人助理:classificazione degli inti,由于综合和丰富的dell ' utente,由于选择和丰富的dell ' utente,由于结构化和非结构化的domain contesto。在不同的数据集和不同的社会背景下,每个模型的精度都是不同的。Ciò现代技术咨询和问答对话è效率/活动/现实。
Dialog-based Help Desk through Automated Question Answering and Intent Detection
Modern personal assistants require to access unstructured information in order to successfully fulfill user requests. In this paper, we have studied the use of two machine learning components to design personal assistants: intent classification, to understand the user request, and answer sentence selection, to carry out question answering from unstructured text. The evaluation results derived on five different real-world datasets, associated with different companies, show high accuracy for both tasks. This suggests that modern QA and dialog technology is effective for real-world tasks. I moderni personal assistant richiedono di accedere ad informazioni non strutturate per soddisfare con successo le richieste degli utenti. In questo articolo, abbiamo studiato l’uso dell’ apprendimento automatico per progettare due componenti di un personal assistant: classificazione degli intenti, per comprendere la richiesta dell’utente, e la selezione della frase di risposta per rispondere alle domande con testo non strutturato. I risultati della valutazione derivati da cinque diversi datasets del mondo reale, associati a diverse società, mostrano un’elevata precisione per entrambi i modelli. Ciò suggerisce che la moderna tecnologia di question answering e dialogo è efficace per attività reali.