数据挖掘中的混合机器学习方法

Jyothi Bellary, Bhargavi Peyakunta, Sekhar Konetigari
{"title":"数据挖掘中的混合机器学习方法","authors":"Jyothi Bellary, Bhargavi Peyakunta, Sekhar Konetigari","doi":"10.1109/ICMLC.2010.57","DOIUrl":null,"url":null,"abstract":"In this paper we discuss various machine learning approaches used in mining of data. Further we distinguish between symbolic and sub-symbolic data mining methods. We also attempt to propose a hybrid method with the combination of Artificial Neural Network (ANN) and Cased Based Reasoning (CBR) in mining of data.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hybrid Machine Learning Approach in Data Mining\",\"authors\":\"Jyothi Bellary, Bhargavi Peyakunta, Sekhar Konetigari\",\"doi\":\"10.1109/ICMLC.2010.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss various machine learning approaches used in mining of data. Further we distinguish between symbolic and sub-symbolic data mining methods. We also attempt to propose a hybrid method with the combination of Artificial Neural Network (ANN) and Cased Based Reasoning (CBR) in mining of data.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们讨论了用于数据挖掘的各种机器学习方法。我们进一步区分了符号和子符号数据挖掘方法。我们还尝试提出一种将人工神经网络(ANN)和基于案例推理(CBR)相结合的数据挖掘混合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Machine Learning Approach in Data Mining
In this paper we discuss various machine learning approaches used in mining of data. Further we distinguish between symbolic and sub-symbolic data mining methods. We also attempt to propose a hybrid method with the combination of Artificial Neural Network (ANN) and Cased Based Reasoning (CBR) in mining of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信