NvMR

A. Bhattacharyya, Abhijith Somashekhar, Joshua San Miguel
{"title":"NvMR","authors":"A. Bhattacharyya, Abhijith Somashekhar, Joshua San Miguel","doi":"10.1145/3470496.3527413","DOIUrl":null,"url":null,"abstract":"Intermittent systems on energy-harvesting devices have to frequently back up data because of an unreliable energy supply to make forward progress. These devices come with non-volatile memories like Flash/FRAM on board that are used to back up the system state. However, quite paradoxically, writing to a non-volatile memory consumes a lot of energy that makes backups expensive. Idem-potency violations inherent to intermittent programs are major contributors to the problem, as they render system state inconsistent and force backups to occur even when plenty of energy is available. In this work, we first characterize the complex persist dependencies that are unique to intermittent computing. Based on these insights, we propose NvMR, an intermittent architecture that eliminates idempotency violations in the program by renaming non-volatile memory addresses. This can reduce the number of backups to their theoretical minimum and decouple the decision of when to perform backups from the memory access constraints imposed by the program. Our evaluations show that compared to a state-of-the-art intermittent architecture, NvMR can save about 20% energy on average when running common embedded applications.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NvMR\",\"authors\":\"A. Bhattacharyya, Abhijith Somashekhar, Joshua San Miguel\",\"doi\":\"10.1145/3470496.3527413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intermittent systems on energy-harvesting devices have to frequently back up data because of an unreliable energy supply to make forward progress. These devices come with non-volatile memories like Flash/FRAM on board that are used to back up the system state. However, quite paradoxically, writing to a non-volatile memory consumes a lot of energy that makes backups expensive. Idem-potency violations inherent to intermittent programs are major contributors to the problem, as they render system state inconsistent and force backups to occur even when plenty of energy is available. In this work, we first characterize the complex persist dependencies that are unique to intermittent computing. Based on these insights, we propose NvMR, an intermittent architecture that eliminates idempotency violations in the program by renaming non-volatile memory addresses. This can reduce the number of backups to their theoretical minimum and decouple the decision of when to perform backups from the memory access constraints imposed by the program. Our evaluations show that compared to a state-of-the-art intermittent architecture, NvMR can save about 20% energy on average when running common embedded applications.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
NvMR
Intermittent systems on energy-harvesting devices have to frequently back up data because of an unreliable energy supply to make forward progress. These devices come with non-volatile memories like Flash/FRAM on board that are used to back up the system state. However, quite paradoxically, writing to a non-volatile memory consumes a lot of energy that makes backups expensive. Idem-potency violations inherent to intermittent programs are major contributors to the problem, as they render system state inconsistent and force backups to occur even when plenty of energy is available. In this work, we first characterize the complex persist dependencies that are unique to intermittent computing. Based on these insights, we propose NvMR, an intermittent architecture that eliminates idempotency violations in the program by renaming non-volatile memory addresses. This can reduce the number of backups to their theoretical minimum and decouple the decision of when to perform backups from the memory access constraints imposed by the program. Our evaluations show that compared to a state-of-the-art intermittent architecture, NvMR can save about 20% energy on average when running common embedded applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信