{"title":"稀疏线性最小二乘的LU分解迭代解","authors":"G. Howell, M. Baboulin","doi":"10.1145/3149457.3149462","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in computing the solution of an overdetermined sparse linear least squares problem Ax=b via the normal equations method. Transforming the normal equations using the L factor from a rectangular LU decomposition of A usually leads to a better conditioned problem. Here we explore a further preconditioning by inv(L1) where L1 is the n × n upper part of the lower trapezoidal m × n factor L. Since the condition number of the iteration matrix can be easily bounded, we can determine whether the iteration will be effective, and whether further pre-conditioning is required. Numerical experiments are performed with the Julia programming language. When the upper triangular matrix U has no near zero diagonal elements, the algorithm is observed to be reliable. When A has only a few more rows than columns, convergence requires relatively few iterations and the algorithm usually requires less storage than the Cholesky factor of AtA or the R factor of the QR factorization of A.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative Solution of Sparse Linear Least Squares using LU Factorization\",\"authors\":\"G. Howell, M. Baboulin\",\"doi\":\"10.1145/3149457.3149462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in computing the solution of an overdetermined sparse linear least squares problem Ax=b via the normal equations method. Transforming the normal equations using the L factor from a rectangular LU decomposition of A usually leads to a better conditioned problem. Here we explore a further preconditioning by inv(L1) where L1 is the n × n upper part of the lower trapezoidal m × n factor L. Since the condition number of the iteration matrix can be easily bounded, we can determine whether the iteration will be effective, and whether further pre-conditioning is required. Numerical experiments are performed with the Julia programming language. When the upper triangular matrix U has no near zero diagonal elements, the algorithm is observed to be reliable. When A has only a few more rows than columns, convergence requires relatively few iterations and the algorithm usually requires less storage than the Cholesky factor of AtA or the R factor of the QR factorization of A.\",\"PeriodicalId\":314778,\"journal\":{\"name\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149457.3149462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149457.3149462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative Solution of Sparse Linear Least Squares using LU Factorization
In this paper, we are interested in computing the solution of an overdetermined sparse linear least squares problem Ax=b via the normal equations method. Transforming the normal equations using the L factor from a rectangular LU decomposition of A usually leads to a better conditioned problem. Here we explore a further preconditioning by inv(L1) where L1 is the n × n upper part of the lower trapezoidal m × n factor L. Since the condition number of the iteration matrix can be easily bounded, we can determine whether the iteration will be effective, and whether further pre-conditioning is required. Numerical experiments are performed with the Julia programming language. When the upper triangular matrix U has no near zero diagonal elements, the algorithm is observed to be reliable. When A has only a few more rows than columns, convergence requires relatively few iterations and the algorithm usually requires less storage than the Cholesky factor of AtA or the R factor of the QR factorization of A.