基于集成学习改进深度学习的RGB-D对象识别模型

Andreas Aakerberg, Kamal Nasrollahi, Thomas Heder
{"title":"基于集成学习改进深度学习的RGB-D对象识别模型","authors":"Andreas Aakerberg, Kamal Nasrollahi, Thomas Heder","doi":"10.1109/IPTA.2017.8310101","DOIUrl":null,"url":null,"abstract":"Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to improve the performance of visual recognition models is ensemble learning. However, this method has not been widely explored in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments on the Washington RGB-D Object Dataset show that our best performing ensemble improves the recognition performance with 0.7% compared to using the baseline model alone.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Improving a deep learning based RGB-D object recognition model by ensemble learning\",\"authors\":\"Andreas Aakerberg, Kamal Nasrollahi, Thomas Heder\",\"doi\":\"10.1109/IPTA.2017.8310101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to improve the performance of visual recognition models is ensemble learning. However, this method has not been widely explored in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments on the Washington RGB-D Object Dataset show that our best performing ensemble improves the recognition performance with 0.7% compared to using the baseline model alone.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

利用深度信息增强RGB图像是一种众所周知的方法,可以显著提高目标识别模型的识别精度。另一种提高视觉识别模型性能的方法是集成学习。然而,该方法尚未与基于深度卷积神经网络的RGB-D对象识别模型相结合进行广泛探索。因此,在本文中,我们形成了互补的深度卷积神经网络模型的不同集合,并表明这可以用来提高识别性能,超越现有的限制。在华盛顿RGB-D对象数据集上的实验表明,与单独使用基线模型相比,我们表现最好的集成将识别性能提高了0.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving a deep learning based RGB-D object recognition model by ensemble learning
Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to improve the performance of visual recognition models is ensemble learning. However, this method has not been widely explored in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments on the Washington RGB-D Object Dataset show that our best performing ensemble improves the recognition performance with 0.7% compared to using the baseline model alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信