{"title":"聚酯纤维绳六种长度变化特性测试(6 CILP)","authors":"J. Flory, Vidar Åhjem","doi":"10.1109/OCEANS-BERGEN.2013.6607951","DOIUrl":null,"url":null,"abstract":"This paper discusses recent advances in understanding how the length of a fiber rope changes under various tension conditions and histories. The change-in-length characteristics of polyester rope can be completely represented by six properties: original stiffness, static stiffness, dynamic stiffness, construction strain, polymer strain, and working strain. This is called the 6 CILP method.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Testing polyester fiber rope for six change-in-length properties (6 CILP)\",\"authors\":\"J. Flory, Vidar Åhjem\",\"doi\":\"10.1109/OCEANS-BERGEN.2013.6607951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses recent advances in understanding how the length of a fiber rope changes under various tension conditions and histories. The change-in-length characteristics of polyester rope can be completely represented by six properties: original stiffness, static stiffness, dynamic stiffness, construction strain, polymer strain, and working strain. This is called the 6 CILP method.\",\"PeriodicalId\":224246,\"journal\":{\"name\":\"2013 MTS/IEEE OCEANS - Bergen\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 MTS/IEEE OCEANS - Bergen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS-BERGEN.2013.6607951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6607951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing polyester fiber rope for six change-in-length properties (6 CILP)
This paper discusses recent advances in understanding how the length of a fiber rope changes under various tension conditions and histories. The change-in-length characteristics of polyester rope can be completely represented by six properties: original stiffness, static stiffness, dynamic stiffness, construction strain, polymer strain, and working strain. This is called the 6 CILP method.