Dafeng Chi, Yuzheng Zhuang, Yao Mu, Bin Wang, Jianzhu Bao, Yasheng Wang, Yuhan Dong, Xin Jiang, Qun Liu, Jianye Hao
{"title":"离线到在线协同进化用户模拟器和对话系统","authors":"Dafeng Chi, Yuzheng Zhuang, Yao Mu, Bin Wang, Jianzhu Bao, Yasheng Wang, Yuhan Dong, Xin Jiang, Qun Liu, Jianye Hao","doi":"10.18653/v1/2022.seretod-1.11","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) has emerged as a promising approach to fine-tune offline pretrained GPT-2 model in task-oriented dialogue (TOD) systems. In order to obtain human-like online interactions while extending the usage of RL, building pretrained user simulators (US) along with dialogue systems (DS) and facilitating jointly fine-tuning via RL becomes prevalent. However, joint training brings distributional shift problem caused by compounding exposure bias. Existing methods usually iterative update US and DS to ameliorate the ensued non-stationarity problem, which could lead to sub-optimal policy and less sample efficiency. To take a step further for tackling the problem, we introduce an Offline-to-oNline Co-Evolutional (ONCE) framework, which enables bias-aware concurrent joint update for RL-based fine-tuning whilst takes advantages from GPT-2 based end-to-end modeling on US and DS. Extensive experiments demonstrate that ONCE builds high-quality loops of policy learning and dialogues data collection, and achieves state-of-the-art online and offline evaluation results on MultiWOZ2.1 dataset. Opensourced code will be implemented with Mindspore (MS, 2022) and released on our homepage.","PeriodicalId":171614,"journal":{"name":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline-to-Online Co-Evolutional User Simulator and Dialogue System\",\"authors\":\"Dafeng Chi, Yuzheng Zhuang, Yao Mu, Bin Wang, Jianzhu Bao, Yasheng Wang, Yuhan Dong, Xin Jiang, Qun Liu, Jianye Hao\",\"doi\":\"10.18653/v1/2022.seretod-1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) has emerged as a promising approach to fine-tune offline pretrained GPT-2 model in task-oriented dialogue (TOD) systems. In order to obtain human-like online interactions while extending the usage of RL, building pretrained user simulators (US) along with dialogue systems (DS) and facilitating jointly fine-tuning via RL becomes prevalent. However, joint training brings distributional shift problem caused by compounding exposure bias. Existing methods usually iterative update US and DS to ameliorate the ensued non-stationarity problem, which could lead to sub-optimal policy and less sample efficiency. To take a step further for tackling the problem, we introduce an Offline-to-oNline Co-Evolutional (ONCE) framework, which enables bias-aware concurrent joint update for RL-based fine-tuning whilst takes advantages from GPT-2 based end-to-end modeling on US and DS. Extensive experiments demonstrate that ONCE builds high-quality loops of policy learning and dialogues data collection, and achieves state-of-the-art online and offline evaluation results on MultiWOZ2.1 dataset. Opensourced code will be implemented with Mindspore (MS, 2022) and released on our homepage.\",\"PeriodicalId\":171614,\"journal\":{\"name\":\"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.seretod-1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.seretod-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Offline-to-Online Co-Evolutional User Simulator and Dialogue System
Reinforcement learning (RL) has emerged as a promising approach to fine-tune offline pretrained GPT-2 model in task-oriented dialogue (TOD) systems. In order to obtain human-like online interactions while extending the usage of RL, building pretrained user simulators (US) along with dialogue systems (DS) and facilitating jointly fine-tuning via RL becomes prevalent. However, joint training brings distributional shift problem caused by compounding exposure bias. Existing methods usually iterative update US and DS to ameliorate the ensued non-stationarity problem, which could lead to sub-optimal policy and less sample efficiency. To take a step further for tackling the problem, we introduce an Offline-to-oNline Co-Evolutional (ONCE) framework, which enables bias-aware concurrent joint update for RL-based fine-tuning whilst takes advantages from GPT-2 based end-to-end modeling on US and DS. Extensive experiments demonstrate that ONCE builds high-quality loops of policy learning and dialogues data collection, and achieves state-of-the-art online and offline evaluation results on MultiWOZ2.1 dataset. Opensourced code will be implemented with Mindspore (MS, 2022) and released on our homepage.