使用LSTM方法识别信用卡客户端违约:案例研究

Jui-Yu Wu, Peiyan Liu
{"title":"使用LSTM方法识别信用卡客户端违约:案例研究","authors":"Jui-Yu Wu, Peiyan Liu","doi":"10.5121/csit.2022.121012","DOIUrl":null,"url":null,"abstract":"Detecting fraudulent transactions is critical and challenging for financial banks and institutes. This study used a deep learning technique, which is a long short-term memory (LSTM) method, for identifying a default of credit card clients (an imbalanced dataset). To evaluate the performance of optimizers for the LSTM approach, this study employed three optimizers based on gradient methods, such as adaptive moment estimation (Adam), stochastic gradient descent with momentum (Sgdm) and root mean square propagation (Rmsprop). This study used 10-fold cross-validation. Moreover, this study compared the best numerical results of the LSTM method with those of supervised machine learning classifiers, which are back-propagation neural network (BPNN) with a gradient descent algorithm (GDA) and a scaled conjugate gradient algorithm (SCGA). Numerical results indicate that the LSTM-Adam and the BPNN-SCGA classifiers have identical performance, and that selecting an appropriate classification threshold value is important for an imbalanced dataset. Based on the numerical results, the LSTM-Adam classifier can be considered for dealing with credit scoring problems, which are binary classification problems.","PeriodicalId":402252,"journal":{"name":"Artificial Intelligence Trends","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying a Default of Credit Card Clients by using a LSTM Method: A Case Study\",\"authors\":\"Jui-Yu Wu, Peiyan Liu\",\"doi\":\"10.5121/csit.2022.121012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting fraudulent transactions is critical and challenging for financial banks and institutes. This study used a deep learning technique, which is a long short-term memory (LSTM) method, for identifying a default of credit card clients (an imbalanced dataset). To evaluate the performance of optimizers for the LSTM approach, this study employed three optimizers based on gradient methods, such as adaptive moment estimation (Adam), stochastic gradient descent with momentum (Sgdm) and root mean square propagation (Rmsprop). This study used 10-fold cross-validation. Moreover, this study compared the best numerical results of the LSTM method with those of supervised machine learning classifiers, which are back-propagation neural network (BPNN) with a gradient descent algorithm (GDA) and a scaled conjugate gradient algorithm (SCGA). Numerical results indicate that the LSTM-Adam and the BPNN-SCGA classifiers have identical performance, and that selecting an appropriate classification threshold value is important for an imbalanced dataset. Based on the numerical results, the LSTM-Adam classifier can be considered for dealing with credit scoring problems, which are binary classification problems.\",\"PeriodicalId\":402252,\"journal\":{\"name\":\"Artificial Intelligence Trends\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检测欺诈性交易对金融银行和机构来说是至关重要和具有挑战性的。这项研究使用了一种深度学习技术,这是一种长短期记忆(LSTM)方法,用于识别信用卡客户端的违约(不平衡数据集)。为了评估LSTM方法优化器的性能,本研究采用了三种基于梯度方法的优化器,即自适应矩估计(Adam)、随机动量梯度下降(Sgdm)和均方根传播(Rmsprop)。本研究采用10倍交叉验证。此外,本研究还将LSTM方法的最佳数值结果与监督机器学习分类器的最佳数值结果进行了比较,这两种分类器分别是带梯度下降算法(GDA)的反向传播神经网络(BPNN)和缩放共轭梯度算法(SCGA)。数值结果表明,LSTM-Adam和BPNN-SCGA分类器具有相同的性能,对于不平衡数据集选择合适的分类阈值非常重要。基于数值结果,可以考虑使用LSTM-Adam分类器来处理信用评分问题,这是一种二元分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying a Default of Credit Card Clients by using a LSTM Method: A Case Study
Detecting fraudulent transactions is critical and challenging for financial banks and institutes. This study used a deep learning technique, which is a long short-term memory (LSTM) method, for identifying a default of credit card clients (an imbalanced dataset). To evaluate the performance of optimizers for the LSTM approach, this study employed three optimizers based on gradient methods, such as adaptive moment estimation (Adam), stochastic gradient descent with momentum (Sgdm) and root mean square propagation (Rmsprop). This study used 10-fold cross-validation. Moreover, this study compared the best numerical results of the LSTM method with those of supervised machine learning classifiers, which are back-propagation neural network (BPNN) with a gradient descent algorithm (GDA) and a scaled conjugate gradient algorithm (SCGA). Numerical results indicate that the LSTM-Adam and the BPNN-SCGA classifiers have identical performance, and that selecting an appropriate classification threshold value is important for an imbalanced dataset. Based on the numerical results, the LSTM-Adam classifier can be considered for dealing with credit scoring problems, which are binary classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信