用于优化的异质结双极晶体管的定性建模:一种神经网络方法

M. Vai, Zhimin Xu, S. Prasad
{"title":"用于优化的异质结双极晶体管的定性建模:一种神经网络方法","authors":"M. Vai, Zhimin Xu, S. Prasad","doi":"10.1109/CORNEL.1993.303090","DOIUrl":null,"url":null,"abstract":"A neural network approach is developed to qualitatively model the relationship between fabrication process parameters and the characteristics of a heterojunction bipolar transistor (HBT). An equivalent circuit model is used as an intermediate representation format for this objective. The goal of this research project is to develop a method that can predict and explain changes in the behavior of a device without the need for precise problem formulations and computationally intensive methods. The primary use of such a neural network model is in a reverse modeling process which performs device optimization.<<ETX>>","PeriodicalId":129440,"journal":{"name":"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Qualitatively modeling heterojunction bipolar transistors for optimization: a neural network approach\",\"authors\":\"M. Vai, Zhimin Xu, S. Prasad\",\"doi\":\"10.1109/CORNEL.1993.303090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network approach is developed to qualitatively model the relationship between fabrication process parameters and the characteristics of a heterojunction bipolar transistor (HBT). An equivalent circuit model is used as an intermediate representation format for this objective. The goal of this research project is to develop a method that can predict and explain changes in the behavior of a device without the need for precise problem formulations and computationally intensive methods. The primary use of such a neural network model is in a reverse modeling process which performs device optimization.<<ETX>>\",\"PeriodicalId\":129440,\"journal\":{\"name\":\"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CORNEL.1993.303090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1993.303090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

采用神经网络方法对异质结双极晶体管(HBT)的制造工艺参数与特性之间的关系进行了定性建模。等效电路模型被用作此目标的中间表示格式。该研究项目的目标是开发一种方法,可以预测和解释设备行为的变化,而不需要精确的问题公式和计算密集型方法。这种神经网络模型的主要用途是在执行设备优化的反向建模过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitatively modeling heterojunction bipolar transistors for optimization: a neural network approach
A neural network approach is developed to qualitatively model the relationship between fabrication process parameters and the characteristics of a heterojunction bipolar transistor (HBT). An equivalent circuit model is used as an intermediate representation format for this objective. The goal of this research project is to develop a method that can predict and explain changes in the behavior of a device without the need for precise problem formulations and computationally intensive methods. The primary use of such a neural network model is in a reverse modeling process which performs device optimization.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信