超前一步的能源负荷预测:利用机器和深度学习的多模型方法

Aristeidis Mystakidis, Evangelia Ntozi, Konstantinos D. Afentoulis, Paraskevas Koukaras, Georgios Giannopoulos, N. Bezas, P. Gkaidatzis, D. Ioannidis, Christos Tjortjis, D. Tzovaras
{"title":"超前一步的能源负荷预测:利用机器和深度学习的多模型方法","authors":"Aristeidis Mystakidis, Evangelia Ntozi, Konstantinos D. Afentoulis, Paraskevas Koukaras, Georgios Giannopoulos, N. Bezas, P. Gkaidatzis, D. Ioannidis, Christos Tjortjis, D. Tzovaras","doi":"10.1109/UPEC55022.2022.9917790","DOIUrl":null,"url":null,"abstract":"Emerging Energy Load Forecasting (ELF) methodologies assist Distribution System Operators (DSOs) and Aggregators. Energy imbalance among consumption and generation could also be managed with high prediction accuracy, as well as smart grid applications, like Demand Response (DR) events. This study aims to test several algorithms as a solution for ELF. The proposed methodology utilizes machine/deep learning models for time-series forecasting in the domain of energy consumption. Via result comparison it has been illustrated that Neural Networks (NNs), both artificial NNs such as Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) recurrent NNs with Extreme Gradient Boosting (XGBoost) were the more accurate ones among other models, showcasing Mean Absolute Error (MAE), R-squared (R2), Root Mean Squared Error (RMSE) and Coefficient Variation of Root Mean Squared Error (CVRMSE) values equal to 1.281, 0.98, 2.238 and 0.147, respectively.","PeriodicalId":371561,"journal":{"name":"2022 57th International Universities Power Engineering Conference (UPEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"One Step Ahead Energy Load Forecasting: A Multi-model approach utilizing Machine and Deep Learning\",\"authors\":\"Aristeidis Mystakidis, Evangelia Ntozi, Konstantinos D. Afentoulis, Paraskevas Koukaras, Georgios Giannopoulos, N. Bezas, P. Gkaidatzis, D. Ioannidis, Christos Tjortjis, D. Tzovaras\",\"doi\":\"10.1109/UPEC55022.2022.9917790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging Energy Load Forecasting (ELF) methodologies assist Distribution System Operators (DSOs) and Aggregators. Energy imbalance among consumption and generation could also be managed with high prediction accuracy, as well as smart grid applications, like Demand Response (DR) events. This study aims to test several algorithms as a solution for ELF. The proposed methodology utilizes machine/deep learning models for time-series forecasting in the domain of energy consumption. Via result comparison it has been illustrated that Neural Networks (NNs), both artificial NNs such as Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) recurrent NNs with Extreme Gradient Boosting (XGBoost) were the more accurate ones among other models, showcasing Mean Absolute Error (MAE), R-squared (R2), Root Mean Squared Error (RMSE) and Coefficient Variation of Root Mean Squared Error (CVRMSE) values equal to 1.281, 0.98, 2.238 and 0.147, respectively.\",\"PeriodicalId\":371561,\"journal\":{\"name\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 57th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC55022.2022.9917790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 57th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC55022.2022.9917790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新兴的能源负荷预测(ELF)方法有助于配电系统运营商(dso)和集成商。消费和发电之间的能源不平衡也可以通过高预测精度进行管理,以及智能电网应用,如需求响应(DR)事件。本研究旨在测试几种算法作为ELF的解决方案。提出的方法利用机器/深度学习模型进行能源消耗领域的时间序列预测。结果表明,神经网络(NNs),无论是人工神经网络,如多层感知器(MLP)还是长短期记忆(LSTM)循环神经网络,采用极端梯度增强(XGBoost),在其他模型中都是更准确的,其平均绝对误差(MAE), r平方(R2),均方根误差(RMSE)和均方根误差系数变异(CVRMSE)分别为1.281,0.98,2.238和0.147。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Step Ahead Energy Load Forecasting: A Multi-model approach utilizing Machine and Deep Learning
Emerging Energy Load Forecasting (ELF) methodologies assist Distribution System Operators (DSOs) and Aggregators. Energy imbalance among consumption and generation could also be managed with high prediction accuracy, as well as smart grid applications, like Demand Response (DR) events. This study aims to test several algorithms as a solution for ELF. The proposed methodology utilizes machine/deep learning models for time-series forecasting in the domain of energy consumption. Via result comparison it has been illustrated that Neural Networks (NNs), both artificial NNs such as Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) recurrent NNs with Extreme Gradient Boosting (XGBoost) were the more accurate ones among other models, showcasing Mean Absolute Error (MAE), R-squared (R2), Root Mean Squared Error (RMSE) and Coefficient Variation of Root Mean Squared Error (CVRMSE) values equal to 1.281, 0.98, 2.238 and 0.147, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信