基于公共信息的自适应蚁群算法求解旅行商问题

Yangyang Liu, Xuanjing Shen, Haipeng Chen
{"title":"基于公共信息的自适应蚁群算法求解旅行商问题","authors":"Yangyang Liu, Xuanjing Shen, Haipeng Chen","doi":"10.1109/ICSAI.2012.6223122","DOIUrl":null,"url":null,"abstract":"Ant colony algorithm has been successfully applied to the Traveling Salesman Problem (TSP). But it has some disadvantages, such as easily plunging into local minimum, slow convergence speed and so on. In order to find the optimal path accurately and rapidly, an improved ant colony algorithm is proposed. The improved algorithm strengthens the consideration of the common information to induce ant colony to the local search and reduce the redundant operations. Moreover, improved algorithm uses adaptively adjusting pheromone decay parameter mechanism to adjust convergence rate and ensure the global search ability. Experiments show that the algorithm has a remarkable quality of convergent precision and the convergent velocity.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An adaptive ant colony algorithm based on common information for solving the Traveling Salesman Problem\",\"authors\":\"Yangyang Liu, Xuanjing Shen, Haipeng Chen\",\"doi\":\"10.1109/ICSAI.2012.6223122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant colony algorithm has been successfully applied to the Traveling Salesman Problem (TSP). But it has some disadvantages, such as easily plunging into local minimum, slow convergence speed and so on. In order to find the optimal path accurately and rapidly, an improved ant colony algorithm is proposed. The improved algorithm strengthens the consideration of the common information to induce ant colony to the local search and reduce the redundant operations. Moreover, improved algorithm uses adaptively adjusting pheromone decay parameter mechanism to adjust convergence rate and ensure the global search ability. Experiments show that the algorithm has a remarkable quality of convergent precision and the convergent velocity.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

蚁群算法已成功地应用于旅行商问题(TSP)。但它也存在容易陷入局部极小值、收敛速度慢等缺点。为了准确快速地找到最优路径,提出了一种改进的蚁群算法。改进算法加强了对公共信息的考虑,引导蚁群进行局部搜索,减少了冗余运算。改进算法采用自适应调整信息素衰减参数机制,调整收敛速度,保证全局搜索能力。实验表明,该算法具有显著的收敛精度和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive ant colony algorithm based on common information for solving the Traveling Salesman Problem
Ant colony algorithm has been successfully applied to the Traveling Salesman Problem (TSP). But it has some disadvantages, such as easily plunging into local minimum, slow convergence speed and so on. In order to find the optimal path accurately and rapidly, an improved ant colony algorithm is proposed. The improved algorithm strengthens the consideration of the common information to induce ant colony to the local search and reduce the redundant operations. Moreover, improved algorithm uses adaptively adjusting pheromone decay parameter mechanism to adjust convergence rate and ensure the global search ability. Experiments show that the algorithm has a remarkable quality of convergent precision and the convergent velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信