基于主成分分析和支持向量机分类器的P300单次检测新方法

R. Swarnkar, P. Prasad, A. Keskar, N. C. Shivprakash
{"title":"基于主成分分析和支持向量机分类器的P300单次检测新方法","authors":"R. Swarnkar, P. Prasad, A. Keskar, N. C. Shivprakash","doi":"10.1109/TENCONSPRING.2016.7519432","DOIUrl":null,"url":null,"abstract":"Single trial detection of P300 signal is one of the trending areas of Brain Computer Interface (BCI) research. We propose a new method with a high level of accuracy to detect P300 signals in a single trial. Features were obtained with a new technique making use of the wavelet coefficients. Reduced feature dimension was achieved using Principal Component Analysis (PCA). Support Vector Machine (SVM) was used as the classifier. The proposed method has achieved an accuracy of 98.47% for Subject A and 95.06% for Subject B. Thus a high degree of accuracy was obtained.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new approach to detect P300 in a single trial based on PCA and SVM classifier\",\"authors\":\"R. Swarnkar, P. Prasad, A. Keskar, N. C. Shivprakash\",\"doi\":\"10.1109/TENCONSPRING.2016.7519432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single trial detection of P300 signal is one of the trending areas of Brain Computer Interface (BCI) research. We propose a new method with a high level of accuracy to detect P300 signals in a single trial. Features were obtained with a new technique making use of the wavelet coefficients. Reduced feature dimension was achieved using Principal Component Analysis (PCA). Support Vector Machine (SVM) was used as the classifier. The proposed method has achieved an accuracy of 98.47% for Subject A and 95.06% for Subject B. Thus a high degree of accuracy was obtained.\",\"PeriodicalId\":166275,\"journal\":{\"name\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2016.7519432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

P300信号的单次检测是脑机接口(BCI)研究的热点之一。我们提出了一种在单次试验中检测P300信号的高精度新方法。利用小波系数进行特征提取。利用主成分分析(PCA)实现特征降维。采用支持向量机(SVM)作为分类器。该方法对受试者A的准确率为98.47%,对受试者b的准确率为95.06%,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to detect P300 in a single trial based on PCA and SVM classifier
Single trial detection of P300 signal is one of the trending areas of Brain Computer Interface (BCI) research. We propose a new method with a high level of accuracy to detect P300 signals in a single trial. Features were obtained with a new technique making use of the wavelet coefficients. Reduced feature dimension was achieved using Principal Component Analysis (PCA). Support Vector Machine (SVM) was used as the classifier. The proposed method has achieved an accuracy of 98.47% for Subject A and 95.06% for Subject B. Thus a high degree of accuracy was obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信