广义学习局部平均分类器

S. Hotta
{"title":"广义学习局部平均分类器","authors":"S. Hotta","doi":"10.11371/IIEEJ.37.206","DOIUrl":null,"url":null,"abstract":"〈Summary〉 In this paper, a classifier called Generalized Learning Local Averaging Classifier (GLLAC) is proposed for image classification. GLLAC is regarded as a combination of Local Averaging Classifier (LAC) and Generalized Learning Vector Quantization (GLVQ) for achieving low error rates with small amount of reference vectors. In GLLAC, all k-near reference vectors of the nearest mean vector belonging to the same class to an input vector are moved toward an input vector, whereas those of the nearest mean vector from a different class are moved away from an input vector. The performance of GLLAC is verified with experiments on handwritten digit and color image classification. Experimental results show that GLLAC can achieve lower error rates than conventional classifiers such as GLVQ or Support Vector Machine (SVM).","PeriodicalId":153591,"journal":{"name":"The Journal of the Institute of Image Electronics Engineers of Japan","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Learning Local Averaging Classifier\",\"authors\":\"S. Hotta\",\"doi\":\"10.11371/IIEEJ.37.206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"〈Summary〉 In this paper, a classifier called Generalized Learning Local Averaging Classifier (GLLAC) is proposed for image classification. GLLAC is regarded as a combination of Local Averaging Classifier (LAC) and Generalized Learning Vector Quantization (GLVQ) for achieving low error rates with small amount of reference vectors. In GLLAC, all k-near reference vectors of the nearest mean vector belonging to the same class to an input vector are moved toward an input vector, whereas those of the nearest mean vector from a different class are moved away from an input vector. The performance of GLLAC is verified with experiments on handwritten digit and color image classification. Experimental results show that GLLAC can achieve lower error rates than conventional classifiers such as GLVQ or Support Vector Machine (SVM).\",\"PeriodicalId\":153591,\"journal\":{\"name\":\"The Journal of the Institute of Image Electronics Engineers of Japan\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Institute of Image Electronics Engineers of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11371/IIEEJ.37.206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Image Electronics Engineers of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11371/IIEEJ.37.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于图像分类的分类器——广义学习局部平均分类器(GLLAC)。GLLAC被认为是局部平均分类器(LAC)和广义学习向量量化(GLVQ)的结合,可以在少量参考向量的情况下实现低错误率。在glac中,与输入向量属于同一类的最近平均向量的所有k-近参考向量都向输入向量移动,而来自不同类的最近平均向量的所有k-近参考向量都远离输入向量。通过手写体数字和彩色图像的分类实验,验证了该算法的性能。实验结果表明,与GLVQ或支持向量机(SVM)等传统分类器相比,GLLAC可以实现更低的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Learning Local Averaging Classifier
〈Summary〉 In this paper, a classifier called Generalized Learning Local Averaging Classifier (GLLAC) is proposed for image classification. GLLAC is regarded as a combination of Local Averaging Classifier (LAC) and Generalized Learning Vector Quantization (GLVQ) for achieving low error rates with small amount of reference vectors. In GLLAC, all k-near reference vectors of the nearest mean vector belonging to the same class to an input vector are moved toward an input vector, whereas those of the nearest mean vector from a different class are moved away from an input vector. The performance of GLLAC is verified with experiments on handwritten digit and color image classification. Experimental results show that GLLAC can achieve lower error rates than conventional classifiers such as GLVQ or Support Vector Machine (SVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信