市场细分的仿生方法:原理和比较分析

J. Aurifeille
{"title":"市场细分的仿生方法:原理和比较分析","authors":"J. Aurifeille","doi":"10.1051/EJESS:2000111","DOIUrl":null,"url":null,"abstract":"– A regression algorithm is proposed for partitioning a population into clusters characterised by homogeneous models and predictions. This algorithm, Typren, is based on the hybridisation of a genetic algorithm with linear regression. An empirical illustration is provided, using real marketing data, which compares Typren with the fuzzy clustering approach, Glimmix, based on a regression mixture model. Typren provides better predictivity and better within-cluster homogeneity of predictions. However, the results are slightly less robust compared to Glimmix.","PeriodicalId":352454,"journal":{"name":"European Journal of Economic and Social Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A bio-mimetic approach to marketing segmentation: Principles and comparative analysis\",\"authors\":\"J. Aurifeille\",\"doi\":\"10.1051/EJESS:2000111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"– A regression algorithm is proposed for partitioning a population into clusters characterised by homogeneous models and predictions. This algorithm, Typren, is based on the hybridisation of a genetic algorithm with linear regression. An empirical illustration is provided, using real marketing data, which compares Typren with the fuzzy clustering approach, Glimmix, based on a regression mixture model. Typren provides better predictivity and better within-cluster homogeneity of predictions. However, the results are slightly less robust compared to Glimmix.\",\"PeriodicalId\":352454,\"journal\":{\"name\":\"European Journal of Economic and Social Systems\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Economic and Social Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/EJESS:2000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Economic and Social Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EJESS:2000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

-提出了一种回归算法,用于将人口划分为具有同质模型和预测特征的集群。这个算法,Typren,是基于遗传算法和线性回归的混合。本文利用真实的营销数据,将Typren与基于回归混合模型的模糊聚类方法Glimmix进行了比较。Typren提供了更好的预测性和更好的预测簇内同质性。然而,与Glimmix相比,其结果略显不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bio-mimetic approach to marketing segmentation: Principles and comparative analysis
– A regression algorithm is proposed for partitioning a population into clusters characterised by homogeneous models and predictions. This algorithm, Typren, is based on the hybridisation of a genetic algorithm with linear regression. An empirical illustration is provided, using real marketing data, which compares Typren with the fuzzy clustering approach, Glimmix, based on a regression mixture model. Typren provides better predictivity and better within-cluster homogeneity of predictions. However, the results are slightly less robust compared to Glimmix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信