2 .家庭动态

Santanu Nandi
{"title":"2 .家庭动态","authors":"Santanu Nandi","doi":"10.17654/DS032020067","DOIUrl":null,"url":null,"abstract":"This article discusses some topological properties of the dynamical plane ($z$-plane) of the holomorphic family of meromorphic maps $\\lambda \\tan z^2$ for $ \\lambda \\in \\mathbb C^*$. In the dynamical plane, I prove that there is no Herman ring and the Julia set is a Cantor set for the maps when the parameter is in the hyperbolic component containing the origin. Julia set is connected for the maps when the parameters are in other hyperbolic components in the parameter plane.","PeriodicalId":330387,"journal":{"name":"Far East Journal of Dynamical Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DYNAMICS OF THE FAMILY tan z2\",\"authors\":\"Santanu Nandi\",\"doi\":\"10.17654/DS032020067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses some topological properties of the dynamical plane ($z$-plane) of the holomorphic family of meromorphic maps $\\\\lambda \\\\tan z^2$ for $ \\\\lambda \\\\in \\\\mathbb C^*$. In the dynamical plane, I prove that there is no Herman ring and the Julia set is a Cantor set for the maps when the parameter is in the hyperbolic component containing the origin. Julia set is connected for the maps when the parameters are in other hyperbolic components in the parameter plane.\",\"PeriodicalId\":330387,\"journal\":{\"name\":\"Far East Journal of Dynamical Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Far East Journal of Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/DS032020067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/DS032020067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了$ \lambda \in \mathbb C^*$的亚纯映射$\lambda \tan z^2$的全纯族的动力平面($z$ -平面)的一些拓扑性质。在动力平面上,证明了当参数在包含原点的双曲分量内时,映射的Julia集是Cantor集,且不存在Herman环。当参数在参数平面的其他双曲组件中时,Julia集连接映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DYNAMICS OF THE FAMILY tan z2
This article discusses some topological properties of the dynamical plane ($z$-plane) of the holomorphic family of meromorphic maps $\lambda \tan z^2$ for $ \lambda \in \mathbb C^*$. In the dynamical plane, I prove that there is no Herman ring and the Julia set is a Cantor set for the maps when the parameter is in the hyperbolic component containing the origin. Julia set is connected for the maps when the parameters are in other hyperbolic components in the parameter plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信