尾部风险保护:机器学习与现代计量经济学的结合

Bruno Spilak, W. Härdle
{"title":"尾部风险保护:机器学习与现代计量经济学的结合","authors":"Bruno Spilak, W. Härdle","doi":"10.2139/ssrn.3714632","DOIUrl":null,"url":null,"abstract":"Tail risk protection is in the focus of the financial industry and requires solid mathematical and statistical tools, especially when a trading strategy is derived. Recent hype driven by machine learning (ML) mechanisms has raised the necessity to display and understand the functionality of ML tools. In this paper, we present a dynamic tail risk protection strategy that targets a maximum predefined level of risk measured by Value-At-Risk while controlling for participation in bull market regimes. We propose different weak classifiers, parametric and non-parametric, that estimate the exceedance probability of the risk level from which we derive trading signals in order to hedge tail events. We then compare the different approaches both with statistical and trading strategy performance, finally we propose an ensemble classifier that produces a meta tail risk protection strategy improving both generalization and trading performance.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tail-Risk Protection: Machine Learning Meets Modern Econometrics\",\"authors\":\"Bruno Spilak, W. Härdle\",\"doi\":\"10.2139/ssrn.3714632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tail risk protection is in the focus of the financial industry and requires solid mathematical and statistical tools, especially when a trading strategy is derived. Recent hype driven by machine learning (ML) mechanisms has raised the necessity to display and understand the functionality of ML tools. In this paper, we present a dynamic tail risk protection strategy that targets a maximum predefined level of risk measured by Value-At-Risk while controlling for participation in bull market regimes. We propose different weak classifiers, parametric and non-parametric, that estimate the exceedance probability of the risk level from which we derive trading signals in order to hedge tail events. We then compare the different approaches both with statistical and trading strategy performance, finally we propose an ensemble classifier that produces a meta tail risk protection strategy improving both generalization and trading performance.\",\"PeriodicalId\":239853,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3714632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3714632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

尾部风险保护是金融行业关注的焦点,需要可靠的数学和统计工具,尤其是在衍生交易策略时。最近由机器学习(ML)机制驱动的炒作提高了展示和理解ML工具功能的必要性。在本文中,我们提出了一种动态尾部风险保护策略,该策略针对由风险价值衡量的最大预定义风险水平,同时控制牛市制度的参与。我们提出了不同的弱分类器,参数和非参数,估计风险水平的超出概率,我们从中得出交易信号,以对冲尾部事件。然后,我们比较了统计和交易策略性能的不同方法,最后我们提出了一个集成分类器,该分类器产生了一个元尾部风险保护策略,提高了泛化和交易性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail-Risk Protection: Machine Learning Meets Modern Econometrics
Tail risk protection is in the focus of the financial industry and requires solid mathematical and statistical tools, especially when a trading strategy is derived. Recent hype driven by machine learning (ML) mechanisms has raised the necessity to display and understand the functionality of ML tools. In this paper, we present a dynamic tail risk protection strategy that targets a maximum predefined level of risk measured by Value-At-Risk while controlling for participation in bull market regimes. We propose different weak classifiers, parametric and non-parametric, that estimate the exceedance probability of the risk level from which we derive trading signals in order to hedge tail events. We then compare the different approaches both with statistical and trading strategy performance, finally we propose an ensemble classifier that produces a meta tail risk protection strategy improving both generalization and trading performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信