Panraphee Raphiphan, A. Zaslavsky, Passakon Prathombutr, P. Meesad
{"title":"利用智能自适应交通拥堵分析系统克服路边传感器的不确定性","authors":"Panraphee Raphiphan, A. Zaslavsky, Passakon Prathombutr, P. Meesad","doi":"10.1109/IVS.2009.5164425","DOIUrl":null,"url":null,"abstract":"Real time traffic congestion degree is useful information in assisting decision making of drivers. It can also be a factor for calculating other traffic information. The congestion degree can be usually calculated on the basis of sensors installed along roads. It is possible that the sensory data can be lost due to potentially unreliable communication or faulty sensors, leading to lost of important traffic data. In this paper, we propose both adaptive traffic congestion analysis system architecture as well as a novel traffic congestion estimation algorithm that can compensate missing sensory data. An ability to provide traffic condition of road segments at all time is feasible. Unlike other existing methods, our approach aims not to rely on only traffic data from sensors, but utilize discoverable external context instead. The promising experiment result and analysis are reported in this paper. In addition, the context attribute correlation analysis is also discussed.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overcoming uncertainty of roadside sensors with smart adaptive traffic congestion analysis system\",\"authors\":\"Panraphee Raphiphan, A. Zaslavsky, Passakon Prathombutr, P. Meesad\",\"doi\":\"10.1109/IVS.2009.5164425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real time traffic congestion degree is useful information in assisting decision making of drivers. It can also be a factor for calculating other traffic information. The congestion degree can be usually calculated on the basis of sensors installed along roads. It is possible that the sensory data can be lost due to potentially unreliable communication or faulty sensors, leading to lost of important traffic data. In this paper, we propose both adaptive traffic congestion analysis system architecture as well as a novel traffic congestion estimation algorithm that can compensate missing sensory data. An ability to provide traffic condition of road segments at all time is feasible. Unlike other existing methods, our approach aims not to rely on only traffic data from sensors, but utilize discoverable external context instead. The promising experiment result and analysis are reported in this paper. In addition, the context attribute correlation analysis is also discussed.\",\"PeriodicalId\":396749,\"journal\":{\"name\":\"2009 IEEE Intelligent Vehicles Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2009.5164425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Overcoming uncertainty of roadside sensors with smart adaptive traffic congestion analysis system
Real time traffic congestion degree is useful information in assisting decision making of drivers. It can also be a factor for calculating other traffic information. The congestion degree can be usually calculated on the basis of sensors installed along roads. It is possible that the sensory data can be lost due to potentially unreliable communication or faulty sensors, leading to lost of important traffic data. In this paper, we propose both adaptive traffic congestion analysis system architecture as well as a novel traffic congestion estimation algorithm that can compensate missing sensory data. An ability to provide traffic condition of road segments at all time is feasible. Unlike other existing methods, our approach aims not to rely on only traffic data from sensors, but utilize discoverable external context instead. The promising experiment result and analysis are reported in this paper. In addition, the context attribute correlation analysis is also discussed.