基于本体感觉和小波分析的碎石桩自动分类研究

U. Artan, J. Marshall
{"title":"基于本体感觉和小波分析的碎石桩自动分类研究","authors":"U. Artan, J. Marshall","doi":"10.1109/MFI49285.2020.9235261","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a method for classifying rock piles characterized by different size distributions by using accelerometer data and wavelet analysis. Size distribution (frag-mentation) estimates are used in the mining and aggregates industries to ensure the rock that enters the crushing and grinding circuits meet input design specifications. Current technologies use exteroceptive sensing to estimate size distributions from, for example, camera images. Our approach instead proposes the use of signals acquired from the process of loading equipment that are used to transport fragmented rock. The experimental setup used a laboratory-sized mock up of a haul truck with two inertial measurement units (IMUs) for data collection. Results utilizing wavelet analysis are provided that show how accelerometers could be used to distinguish between piles with different size distributions.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis\",\"authors\":\"U. Artan, J. Marshall\",\"doi\":\"10.1109/MFI49285.2020.9235261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a method for classifying rock piles characterized by different size distributions by using accelerometer data and wavelet analysis. Size distribution (frag-mentation) estimates are used in the mining and aggregates industries to ensure the rock that enters the crushing and grinding circuits meet input design specifications. Current technologies use exteroceptive sensing to estimate size distributions from, for example, camera images. Our approach instead proposes the use of signals acquired from the process of loading equipment that are used to transport fragmented rock. The experimental setup used a laboratory-sized mock up of a haul truck with two inertial measurement units (IMUs) for data collection. Results utilizing wavelet analysis are provided that show how accelerometers could be used to distinguish between piles with different size distributions.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种利用加速度计数据和小波分析对不同尺寸分布特征的岩桩进行分类的方法。粒度分布(破碎)估计用于采矿和集料行业,以确保进入破碎和研磨回路的岩石符合输入设计规格。目前的技术使用外部感知来估计尺寸分布,例如,相机图像。相反,我们的方法建议使用从用于运输破碎岩石的装载设备过程中获得的信号。实验装置使用了一个实验室大小的运输卡车模型,带有两个惯性测量单元(imu)用于数据收集。利用小波分析的结果表明,加速度计可以用来区分不同大小分布的桩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
In this paper, we describe a method for classifying rock piles characterized by different size distributions by using accelerometer data and wavelet analysis. Size distribution (frag-mentation) estimates are used in the mining and aggregates industries to ensure the rock that enters the crushing and grinding circuits meet input design specifications. Current technologies use exteroceptive sensing to estimate size distributions from, for example, camera images. Our approach instead proposes the use of signals acquired from the process of loading equipment that are used to transport fragmented rock. The experimental setup used a laboratory-sized mock up of a haul truck with two inertial measurement units (IMUs) for data collection. Results utilizing wavelet analysis are provided that show how accelerometers could be used to distinguish between piles with different size distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信