{"title":"微生物对地下生物地球化学动力学的控制","authors":"M. Thullner, P. Régnier","doi":"10.2138/rmg.2019.85.9","DOIUrl":null,"url":null,"abstract":"Biogeochemical processes are of tremendous importance for determining the fate of many organic and inorganic compounds in the subsurface. Most global elemental cycles involve biogeochemical transformation, and the recycling of carbon and nutrients relies almost exclusively on biogeochemical processes. In particular, the majority of natural organic compounds are biogeochemically reactive, but also a large number of anthropogenic organic carbon compounds can be biogeochemically transformed, for instance, during the biodegradation of organic contaminants. Furthermore, inorganic compounds such as e.g., many nitrogen, phosphorus or sulfur compounds, metal compounds or minerals are directly or indirectly affected by biogeochemical reactions. To which extent and at which conditions a biogeochemical reaction takes place depends not only on the properties of the involved chemical reactants and products but also on the behavior of the microbial community (or communities) catalyzing the biogeochemical transformation. Porous media—in particular natural porous media—are complex and often heterogeneous structures, which imposes severe challenges in determining the exact physical, chemical and ecological conditions the microbial community is exposed to and to which extent it is able to provide any ecosystem service, such as the catalysis of a biogeochemical reaction.","PeriodicalId":439110,"journal":{"name":"Reviews in Mineralogy and Geochemistry","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Microbial Controls on the Biogeochemical Dynamics in the Subsurface\",\"authors\":\"M. Thullner, P. Régnier\",\"doi\":\"10.2138/rmg.2019.85.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biogeochemical processes are of tremendous importance for determining the fate of many organic and inorganic compounds in the subsurface. Most global elemental cycles involve biogeochemical transformation, and the recycling of carbon and nutrients relies almost exclusively on biogeochemical processes. In particular, the majority of natural organic compounds are biogeochemically reactive, but also a large number of anthropogenic organic carbon compounds can be biogeochemically transformed, for instance, during the biodegradation of organic contaminants. Furthermore, inorganic compounds such as e.g., many nitrogen, phosphorus or sulfur compounds, metal compounds or minerals are directly or indirectly affected by biogeochemical reactions. To which extent and at which conditions a biogeochemical reaction takes place depends not only on the properties of the involved chemical reactants and products but also on the behavior of the microbial community (or communities) catalyzing the biogeochemical transformation. Porous media—in particular natural porous media—are complex and often heterogeneous structures, which imposes severe challenges in determining the exact physical, chemical and ecological conditions the microbial community is exposed to and to which extent it is able to provide any ecosystem service, such as the catalysis of a biogeochemical reaction.\",\"PeriodicalId\":439110,\"journal\":{\"name\":\"Reviews in Mineralogy and Geochemistry\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mineralogy and Geochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2138/rmg.2019.85.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy and Geochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2138/rmg.2019.85.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microbial Controls on the Biogeochemical Dynamics in the Subsurface
Biogeochemical processes are of tremendous importance for determining the fate of many organic and inorganic compounds in the subsurface. Most global elemental cycles involve biogeochemical transformation, and the recycling of carbon and nutrients relies almost exclusively on biogeochemical processes. In particular, the majority of natural organic compounds are biogeochemically reactive, but also a large number of anthropogenic organic carbon compounds can be biogeochemically transformed, for instance, during the biodegradation of organic contaminants. Furthermore, inorganic compounds such as e.g., many nitrogen, phosphorus or sulfur compounds, metal compounds or minerals are directly or indirectly affected by biogeochemical reactions. To which extent and at which conditions a biogeochemical reaction takes place depends not only on the properties of the involved chemical reactants and products but also on the behavior of the microbial community (or communities) catalyzing the biogeochemical transformation. Porous media—in particular natural porous media—are complex and often heterogeneous structures, which imposes severe challenges in determining the exact physical, chemical and ecological conditions the microbial community is exposed to and to which extent it is able to provide any ecosystem service, such as the catalysis of a biogeochemical reaction.