带限函数的软外推

Dmitry Batenkov, L. Demanet
{"title":"带限函数的软外推","authors":"Dmitry Batenkov, L. Demanet","doi":"10.1109/CAMSAP.2017.8313182","DOIUrl":null,"url":null,"abstract":"Soft extrapolation refers to the problem of recovering a function from its samples multiplied by a fast-decaying window — in this note a narrow Gaussian. The question is akin to deconvolution, but leverages smoothness of the function in order to achieve stable recovery over an interval potentially larger than the essential support of the window. In case the function is bandlimited, we provide an error bound for extrapolation by a least-squares polynomial fit of a well-chosen degree: it is (morally) proportional to a fractional power of the perturbation level, which goes from 1 near the available samples, to 0 when the extrapolation distance reaches the characteristic smoothness length scale of the function. This bound is minimax in the sense that no algorithm can yield a meaningfully lower error over the same smoothness class. The result in this note can be put in the context of blind superresolution, where it corresponds to the limit of a single spike corrupted by a compactly-supported blur.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft extrapolation of bandlimited functions\",\"authors\":\"Dmitry Batenkov, L. Demanet\",\"doi\":\"10.1109/CAMSAP.2017.8313182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft extrapolation refers to the problem of recovering a function from its samples multiplied by a fast-decaying window — in this note a narrow Gaussian. The question is akin to deconvolution, but leverages smoothness of the function in order to achieve stable recovery over an interval potentially larger than the essential support of the window. In case the function is bandlimited, we provide an error bound for extrapolation by a least-squares polynomial fit of a well-chosen degree: it is (morally) proportional to a fractional power of the perturbation level, which goes from 1 near the available samples, to 0 when the extrapolation distance reaches the characteristic smoothness length scale of the function. This bound is minimax in the sense that no algorithm can yield a meaningfully lower error over the same smoothness class. The result in this note can be put in the context of blind superresolution, where it corresponds to the limit of a single spike corrupted by a compactly-supported blur.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

软外推指的是从其样本乘以一个快速衰减窗口中恢复函数的问题-在这里是一个窄高斯。这个问题类似于反褶积,但利用函数的平滑性,以便在可能大于窗口基本支持的时间间隔内实现稳定恢复。在函数带宽有限的情况下,我们通过选择良好程度的最小二乘多项式拟合为外推提供误差界:它(道德上)与扰动水平的分数次方成正比,当外推距离达到函数的特征平滑长度尺度时,它从可用样本附近的1变为0。这个界限是极大极小的,因为没有任何算法可以在相同的平滑类上产生有意义的更低的误差。这个笔记的结果可以放在盲超分辨率的背景下,它对应于一个被紧支持的模糊破坏的单个尖峰的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft extrapolation of bandlimited functions
Soft extrapolation refers to the problem of recovering a function from its samples multiplied by a fast-decaying window — in this note a narrow Gaussian. The question is akin to deconvolution, but leverages smoothness of the function in order to achieve stable recovery over an interval potentially larger than the essential support of the window. In case the function is bandlimited, we provide an error bound for extrapolation by a least-squares polynomial fit of a well-chosen degree: it is (morally) proportional to a fractional power of the perturbation level, which goes from 1 near the available samples, to 0 when the extrapolation distance reaches the characteristic smoothness length scale of the function. This bound is minimax in the sense that no algorithm can yield a meaningfully lower error over the same smoothness class. The result in this note can be put in the context of blind superresolution, where it corresponds to the limit of a single spike corrupted by a compactly-supported blur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信