压缩域和像素域动作识别方法的鲁棒性研究

Vignesh Srinivasan, Serhan Gul, S. Bosse, Jan Timo Meyer, T. Schierl, C. Hellge, W. Samek
{"title":"压缩域和像素域动作识别方法的鲁棒性研究","authors":"Vignesh Srinivasan, Serhan Gul, S. Bosse, Jan Timo Meyer, T. Schierl, C. Hellge, W. Samek","doi":"10.1109/EUVIP.2016.7764584","DOIUrl":null,"url":null,"abstract":"This paper investigates the robustness of two state-of-the-art action recognition algorithms: a pixel domain approach based on 3D convolutional neural networks (C3D) and a compressed domain approach requiring only partial decoding of the video, based on feature description using motion vectors and Fisher vector encoding (MV-FV). We study the robustness of the two algorithms against: (i) quality variations, (ii) changes in video encoding scheme, (iii) changes in resolutions. Experiments are performed on the HMDB51 dataset. Our main findings are that C3D is robust to variations of these parameters while the MV-FV is very sensitive. Hence, we consider C3D as a baseline method for our analysis. We also analyze the reasons behind these different behaviors and discuss their practical implications.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the robustness of action recognition methods in compressed and pixel domain\",\"authors\":\"Vignesh Srinivasan, Serhan Gul, S. Bosse, Jan Timo Meyer, T. Schierl, C. Hellge, W. Samek\",\"doi\":\"10.1109/EUVIP.2016.7764584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the robustness of two state-of-the-art action recognition algorithms: a pixel domain approach based on 3D convolutional neural networks (C3D) and a compressed domain approach requiring only partial decoding of the video, based on feature description using motion vectors and Fisher vector encoding (MV-FV). We study the robustness of the two algorithms against: (i) quality variations, (ii) changes in video encoding scheme, (iii) changes in resolutions. Experiments are performed on the HMDB51 dataset. Our main findings are that C3D is robust to variations of these parameters while the MV-FV is very sensitive. Hence, we consider C3D as a baseline method for our analysis. We also analyze the reasons behind these different behaviors and discuss their practical implications.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了两种最先进的动作识别算法的鲁棒性:基于3D卷积神经网络(C3D)的像素域方法和基于运动矢量和Fisher矢量编码(MV-FV)的特征描述仅需要对视频进行部分解码的压缩域方法。我们研究了这两种算法的鲁棒性:(i)质量变化,(ii)视频编码方案的变化,(iii)分辨率的变化。实验在HMDB51数据集上进行。我们的主要发现是C3D对这些参数的变化具有鲁棒性,而MV-FV非常敏感。因此,我们认为C3D作为我们分析的基线方法。我们还分析了这些不同行为背后的原因,并讨论了它们的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the robustness of action recognition methods in compressed and pixel domain
This paper investigates the robustness of two state-of-the-art action recognition algorithms: a pixel domain approach based on 3D convolutional neural networks (C3D) and a compressed domain approach requiring only partial decoding of the video, based on feature description using motion vectors and Fisher vector encoding (MV-FV). We study the robustness of the two algorithms against: (i) quality variations, (ii) changes in video encoding scheme, (iii) changes in resolutions. Experiments are performed on the HMDB51 dataset. Our main findings are that C3D is robust to variations of these parameters while the MV-FV is very sensitive. Hence, we consider C3D as a baseline method for our analysis. We also analyze the reasons behind these different behaviors and discuss their practical implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信