{"title":"利用OpenCL实现GPU各向异性Huber-L1密集光流算法","authors":"Duygu Buyukaydin, Toygar Akgün","doi":"10.1109/SAMOS.2015.7363693","DOIUrl":null,"url":null,"abstract":"Optical flow estimation aims at inferring a dense pixel-wise correspondence field between two images or video frames. It is commonly used in video processing and computer vision applications, including motion-compensated frame processing, extracting temporal features, computing stereo disparity, understanding scene context/dynamics and understanding behavior. Dense optical flow estimation is a computationally complex problem. Fortunately, a wide range of optical flow estimation algorithms are embarrassingly parallel and can efficiently be accelerated on GPUs. In this work we discuss a massively multi-threaded GPU implementation of the anisotropic Huber-L1 optical flow estimation algorithm using OpenCL framework, which achieves per frame execution time speed-up factors up to almost 300×. Overall algorithm flow, GPU specific implementation details and performance results are presented.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"GPU implementation of an anisotropic Huber-L1 dense optical flow algorithm using OpenCL\",\"authors\":\"Duygu Buyukaydin, Toygar Akgün\",\"doi\":\"10.1109/SAMOS.2015.7363693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical flow estimation aims at inferring a dense pixel-wise correspondence field between two images or video frames. It is commonly used in video processing and computer vision applications, including motion-compensated frame processing, extracting temporal features, computing stereo disparity, understanding scene context/dynamics and understanding behavior. Dense optical flow estimation is a computationally complex problem. Fortunately, a wide range of optical flow estimation algorithms are embarrassingly parallel and can efficiently be accelerated on GPUs. In this work we discuss a massively multi-threaded GPU implementation of the anisotropic Huber-L1 optical flow estimation algorithm using OpenCL framework, which achieves per frame execution time speed-up factors up to almost 300×. Overall algorithm flow, GPU specific implementation details and performance results are presented.\",\"PeriodicalId\":346802,\"journal\":{\"name\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2015.7363693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GPU implementation of an anisotropic Huber-L1 dense optical flow algorithm using OpenCL
Optical flow estimation aims at inferring a dense pixel-wise correspondence field between two images or video frames. It is commonly used in video processing and computer vision applications, including motion-compensated frame processing, extracting temporal features, computing stereo disparity, understanding scene context/dynamics and understanding behavior. Dense optical flow estimation is a computationally complex problem. Fortunately, a wide range of optical flow estimation algorithms are embarrassingly parallel and can efficiently be accelerated on GPUs. In this work we discuss a massively multi-threaded GPU implementation of the anisotropic Huber-L1 optical flow estimation algorithm using OpenCL framework, which achieves per frame execution time speed-up factors up to almost 300×. Overall algorithm flow, GPU specific implementation details and performance results are presented.