图形处理单元在GF(2^16)上的高效计算

Satoshi Tanaka, T. Yasuda, Bo-Yin Yang, Chen-Mou Cheng, K. Sakurai
{"title":"图形处理单元在GF(2^16)上的高效计算","authors":"Satoshi Tanaka, T. Yasuda, Bo-Yin Yang, Chen-Mou Cheng, K. Sakurai","doi":"10.1109/IMIS.2013.151","DOIUrl":null,"url":null,"abstract":"Evaluating non-linear multivariate polynomial systems over finite fields is an important subroutine, e.g., for encryption and signature verification in multivariate cryptography. The security of multivariate cryptography definitely becomes lower if a larger field is used instead of GF(2) given the same number of bits in the key. However, we still would like to use larger fields because multivariate cryptography tends to run faster at the same level of security if a larger field is used. In this paper, we compare the efficiency of several techniques for evaluating multivariate polynomial systems over GF(216) vi their implementations on graphics processing units.","PeriodicalId":425979,"journal":{"name":"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient Computing over GF(2^16) Using Graphics Processing Unit\",\"authors\":\"Satoshi Tanaka, T. Yasuda, Bo-Yin Yang, Chen-Mou Cheng, K. Sakurai\",\"doi\":\"10.1109/IMIS.2013.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating non-linear multivariate polynomial systems over finite fields is an important subroutine, e.g., for encryption and signature verification in multivariate cryptography. The security of multivariate cryptography definitely becomes lower if a larger field is used instead of GF(2) given the same number of bits in the key. However, we still would like to use larger fields because multivariate cryptography tends to run faster at the same level of security if a larger field is used. In this paper, we compare the efficiency of several techniques for evaluating multivariate polynomial systems over GF(216) vi their implementations on graphics processing units.\",\"PeriodicalId\":425979,\"journal\":{\"name\":\"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMIS.2013.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2013.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

评估有限域上的非线性多元多项式系统是一个重要的子程序,例如在多元密码学中的加密和签名验证。如果在相同的密钥位数下使用更大的字段而不是GF(2),那么多元加密的安全性肯定会降低。但是,我们仍然希望使用更大的字段,因为如果使用更大的字段,在相同的安全级别下,多变量加密往往运行得更快。在本文中,我们比较了几种评估GF(216)上多元多项式系统的技术及其在图形处理单元上的实现的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Computing over GF(2^16) Using Graphics Processing Unit
Evaluating non-linear multivariate polynomial systems over finite fields is an important subroutine, e.g., for encryption and signature verification in multivariate cryptography. The security of multivariate cryptography definitely becomes lower if a larger field is used instead of GF(2) given the same number of bits in the key. However, we still would like to use larger fields because multivariate cryptography tends to run faster at the same level of security if a larger field is used. In this paper, we compare the efficiency of several techniques for evaluating multivariate polynomial systems over GF(216) vi their implementations on graphics processing units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信