标记-清除垃圾收集的可伸缩硬件算法

W. Srisa-an, D. Lo, J. M. Chang
{"title":"标记-清除垃圾收集的可伸缩硬件算法","authors":"W. Srisa-an, D. Lo, J. M. Chang","doi":"10.1109/EURMIC.2000.874643","DOIUrl":null,"url":null,"abstract":"The memory-intensive nature of object-oriented languages such as C++ and Java has created the need for high-performance dynamic memory management. Object-oriented applications often generate higher memory intensity in the heap region. Thus, a high-performance memory manager is needed to cope with such applications. As today's VLSI technology advances, it becomes increasingly attractive to map software algorithms such as malloc(), free() and garbage collection into hardware. This paper presents a hardware design of a sweeping function (for mark-and-sweep garbage collection) that fully utilizes the advantages of combinational logic. In our scheme, the bit sweep can detect and sweep the garbage in a constant time. Bit-map marking in software can improve the cache performance and reduce number of page faults; however, it often requires several instructions to perform a single mark. In our scheme, only one hardware instruction is required per mark. Moreover, since the complexity of the sweeping phase is often higher than the marking phase, the garbage collection time may be substantially improved. The hardware complexity of the proposed scheme (bit-sweeper) is O(n), where n represents the size of the bit map.","PeriodicalId":138250,"journal":{"name":"Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Scalable hardware-algorithm for mark-sweep garbage collection\",\"authors\":\"W. Srisa-an, D. Lo, J. M. Chang\",\"doi\":\"10.1109/EURMIC.2000.874643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The memory-intensive nature of object-oriented languages such as C++ and Java has created the need for high-performance dynamic memory management. Object-oriented applications often generate higher memory intensity in the heap region. Thus, a high-performance memory manager is needed to cope with such applications. As today's VLSI technology advances, it becomes increasingly attractive to map software algorithms such as malloc(), free() and garbage collection into hardware. This paper presents a hardware design of a sweeping function (for mark-and-sweep garbage collection) that fully utilizes the advantages of combinational logic. In our scheme, the bit sweep can detect and sweep the garbage in a constant time. Bit-map marking in software can improve the cache performance and reduce number of page faults; however, it often requires several instructions to perform a single mark. In our scheme, only one hardware instruction is required per mark. Moreover, since the complexity of the sweeping phase is often higher than the marking phase, the garbage collection time may be substantially improved. The hardware complexity of the proposed scheme (bit-sweeper) is O(n), where n represents the size of the bit map.\",\"PeriodicalId\":138250,\"journal\":{\"name\":\"Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURMIC.2000.874643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURMIC.2000.874643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

面向对象语言(如c++和Java)的内存密集型特性产生了对高性能动态内存管理的需求。面向对象的应用程序通常在堆区域产生更高的内存强度。因此,需要一个高性能内存管理器来处理这样的应用程序。随着当今VLSI技术的进步,将malloc()、free()和垃圾收集等软件算法映射到硬件中变得越来越有吸引力。本文提出了一种充分利用组合逻辑的优点的清除函数(用于标记-清除垃圾收集)的硬件设计。在我们的方案中,位扫描可以在恒定的时间内检测和清除垃圾。软件中的位图标记可以提高缓存性能,减少页面错误;然而,它通常需要几个指令来执行一个标记。在我们的方案中,每个标记只需要一条硬件指令。此外,由于清理阶段的复杂性通常高于标记阶段,因此垃圾收集时间可能会大大缩短。所提出的方案(位清扫器)的硬件复杂度为O(n),其中n表示位映射的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable hardware-algorithm for mark-sweep garbage collection
The memory-intensive nature of object-oriented languages such as C++ and Java has created the need for high-performance dynamic memory management. Object-oriented applications often generate higher memory intensity in the heap region. Thus, a high-performance memory manager is needed to cope with such applications. As today's VLSI technology advances, it becomes increasingly attractive to map software algorithms such as malloc(), free() and garbage collection into hardware. This paper presents a hardware design of a sweeping function (for mark-and-sweep garbage collection) that fully utilizes the advantages of combinational logic. In our scheme, the bit sweep can detect and sweep the garbage in a constant time. Bit-map marking in software can improve the cache performance and reduce number of page faults; however, it often requires several instructions to perform a single mark. In our scheme, only one hardware instruction is required per mark. Moreover, since the complexity of the sweeping phase is often higher than the marking phase, the garbage collection time may be substantially improved. The hardware complexity of the proposed scheme (bit-sweeper) is O(n), where n represents the size of the bit map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信