网络在线学习方法

Cem Tekin, M. Liu
{"title":"网络在线学习方法","authors":"Cem Tekin, M. Liu","doi":"10.1561/1300000050","DOIUrl":null,"url":null,"abstract":"In this monograph we provided a tutorial on a family of sequential learning and decision problems known as the multi-armed bandit problems. We introduced a wide range of application scenarios for this learning framework, as well as its many different variants. The more detailed discussion has focused more on the stochastic bandit problems, with rewards driven by either an IID or a Markovian process, and when the environment consists of a single or multiple simultaneous users. We also presented literature on learning of MDPs, which captures coupling among the evolution of different options that a classical MAB problem does not.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Online Learning Methods for Networking\",\"authors\":\"Cem Tekin, M. Liu\",\"doi\":\"10.1561/1300000050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this monograph we provided a tutorial on a family of sequential learning and decision problems known as the multi-armed bandit problems. We introduced a wide range of application scenarios for this learning framework, as well as its many different variants. The more detailed discussion has focused more on the stochastic bandit problems, with rewards driven by either an IID or a Markovian process, and when the environment consists of a single or multiple simultaneous users. We also presented literature on learning of MDPs, which captures coupling among the evolution of different options that a classical MAB problem does not.\",\"PeriodicalId\":188056,\"journal\":{\"name\":\"Found. Trends Netw.\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1300000050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1300000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在这本专著中,我们提供了一个关于一系列序列学习和决策问题的教程,这些问题被称为多武装强盗问题。我们介绍了这个学习框架的广泛应用场景,以及它的许多不同变体。更详细的讨论更多地集中在随机盗匪问题上,当环境由单个或多个同时用户组成时,奖励由IID或马尔可夫过程驱动。我们还介绍了关于mdp学习的文献,它捕获了经典MAB问题所没有的不同选择进化之间的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Learning Methods for Networking
In this monograph we provided a tutorial on a family of sequential learning and decision problems known as the multi-armed bandit problems. We introduced a wide range of application scenarios for this learning framework, as well as its many different variants. The more detailed discussion has focused more on the stochastic bandit problems, with rewards driven by either an IID or a Markovian process, and when the environment consists of a single or multiple simultaneous users. We also presented literature on learning of MDPs, which captures coupling among the evolution of different options that a classical MAB problem does not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信