通过高利用率的移动应用程序进行移动设备级数据建模

Junghyo Lee, P. Seeling
{"title":"通过高利用率的移动应用程序进行移动设备级数据建模","authors":"Junghyo Lee, P. Seeling","doi":"10.1109/CCNC.2014.6940500","DOIUrl":null,"url":null,"abstract":"In this paper, we present a mobile-device level approach to estimating the network data (traffic) that is generated over time. While efforts oftentimes utilize complex approaches, our model captures the main characteristics in the time and data domains of a high utilization application class as Hidden Markov Model while modeling the remaining applications' characteristics in form of a simple background process. We find that our approach is capable of matching the average amounts of data behavior of the source dataset (with a reduction in overall variability of the simulated produced traffic as drawback) and is thus suitable for high level capacity evaluations.","PeriodicalId":287724,"journal":{"name":"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mobile device-level data modeling through high utilization mobile applications\",\"authors\":\"Junghyo Lee, P. Seeling\",\"doi\":\"10.1109/CCNC.2014.6940500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a mobile-device level approach to estimating the network data (traffic) that is generated over time. While efforts oftentimes utilize complex approaches, our model captures the main characteristics in the time and data domains of a high utilization application class as Hidden Markov Model while modeling the remaining applications' characteristics in form of a simple background process. We find that our approach is capable of matching the average amounts of data behavior of the source dataset (with a reduction in overall variability of the simulated produced traffic as drawback) and is thus suitable for high level capacity evaluations.\",\"PeriodicalId\":287724,\"journal\":{\"name\":\"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC.2014.6940500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th Consumer Communications and Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2014.6940500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种移动设备级别的方法来估计随时间产生的网络数据(流量)。虽然工作经常使用复杂的方法,但我们的模型捕获了高利用率应用程序类的时间和数据域的主要特征,作为隐马尔可夫模型,同时以简单的后台过程的形式对其余应用程序的特征进行建模。我们发现,我们的方法能够匹配源数据集的平均数据行为量(以减少模拟产生的流量的总体可变性为缺点),因此适合于高水平的容量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile device-level data modeling through high utilization mobile applications
In this paper, we present a mobile-device level approach to estimating the network data (traffic) that is generated over time. While efforts oftentimes utilize complex approaches, our model captures the main characteristics in the time and data domains of a high utilization application class as Hidden Markov Model while modeling the remaining applications' characteristics in form of a simple background process. We find that our approach is capable of matching the average amounts of data behavior of the source dataset (with a reduction in overall variability of the simulated produced traffic as drawback) and is thus suitable for high level capacity evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信