{"title":"一种快速收敛、低复杂度的自适应滤波算法","authors":"S. Gay","doi":"10.1109/ASPAA.1993.380010","DOIUrl":null,"url":null,"abstract":"This paper introduces a new adaptive filtering algorithm called fast affine projections (FAP). Its main attributes include RLS (recursive least squares) like convergence and tracking with NLMS (normalized least mean squares) like complexity. This mix of complexity and performance is similar to the recently introduced fast Newton transversal filter (FNTF) algorithm. While FAP shares some similar properties with FNTF it is derived from a different perspective, namely the generalization of the affine projection interpretation of NLMS. FAP relies on a sliding windowed fast RLS (FRLS) algorithm to generate forward and backward prediction vectors and expected prediction error energies. Since sliding windowed FRLS algorithms easily incorporate regularization of the implicit inverse of the covariance matrix, FAP is regularized as well.<<ETX>>","PeriodicalId":270576,"journal":{"name":"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"460 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast converging, low complexity adaptive filtering algorithm\",\"authors\":\"S. Gay\",\"doi\":\"10.1109/ASPAA.1993.380010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new adaptive filtering algorithm called fast affine projections (FAP). Its main attributes include RLS (recursive least squares) like convergence and tracking with NLMS (normalized least mean squares) like complexity. This mix of complexity and performance is similar to the recently introduced fast Newton transversal filter (FNTF) algorithm. While FAP shares some similar properties with FNTF it is derived from a different perspective, namely the generalization of the affine projection interpretation of NLMS. FAP relies on a sliding windowed fast RLS (FRLS) algorithm to generate forward and backward prediction vectors and expected prediction error energies. Since sliding windowed FRLS algorithms easily incorporate regularization of the implicit inverse of the covariance matrix, FAP is regularized as well.<<ETX>>\",\"PeriodicalId\":270576,\"journal\":{\"name\":\"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"460 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPAA.1993.380010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1993.380010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast converging, low complexity adaptive filtering algorithm
This paper introduces a new adaptive filtering algorithm called fast affine projections (FAP). Its main attributes include RLS (recursive least squares) like convergence and tracking with NLMS (normalized least mean squares) like complexity. This mix of complexity and performance is similar to the recently introduced fast Newton transversal filter (FNTF) algorithm. While FAP shares some similar properties with FNTF it is derived from a different perspective, namely the generalization of the affine projection interpretation of NLMS. FAP relies on a sliding windowed fast RLS (FRLS) algorithm to generate forward and backward prediction vectors and expected prediction error energies. Since sliding windowed FRLS algorithms easily incorporate regularization of the implicit inverse of the covariance matrix, FAP is regularized as well.<>