使用英特尔SGX隔离操作系统组件

Lars Richter, J. Götzfried, Tilo Müller
{"title":"使用英特尔SGX隔离操作系统组件","authors":"Lars Richter, J. Götzfried, Tilo Müller","doi":"10.1145/3007788.3007796","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach on isolating operating system components with Intel SGX. Although SGX has not been designed to work in kernel mode, we found a way of wrapping Linux kernel functionality within SGX enclaves by moving parts of it to user space. Kernel components are strictly isolated from each other such that a vulnerability in one kernel module cannot escalate into compromising the entire kernel. We provide a proof-of-concept implementation which protects an exemplary kernel function, namely full disk encryption, using an Intel SGX enclave. Besides integrity of the disk encryption, our implementation ensures that the confidentiality of the disk encryption key is protected against all software level attacks as well as physical attacks. In addition to the user password, we use a second authentication factor for deriving the encryption key which is stored sealed and bound to the platform. Thus, stealing the hard drive and sniffing the user password is insufficient for an attacker to break disk encryption. Instead, the two factor authentication scheme requires an attacker to additionally obtain the actual machine to be able to break encryption.","PeriodicalId":365574,"journal":{"name":"Proceedings of the 1st Workshop on System Software for Trusted Execution","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Isolating Operating System Components with Intel SGX\",\"authors\":\"Lars Richter, J. Götzfried, Tilo Müller\",\"doi\":\"10.1145/3007788.3007796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach on isolating operating system components with Intel SGX. Although SGX has not been designed to work in kernel mode, we found a way of wrapping Linux kernel functionality within SGX enclaves by moving parts of it to user space. Kernel components are strictly isolated from each other such that a vulnerability in one kernel module cannot escalate into compromising the entire kernel. We provide a proof-of-concept implementation which protects an exemplary kernel function, namely full disk encryption, using an Intel SGX enclave. Besides integrity of the disk encryption, our implementation ensures that the confidentiality of the disk encryption key is protected against all software level attacks as well as physical attacks. In addition to the user password, we use a second authentication factor for deriving the encryption key which is stored sealed and bound to the platform. Thus, stealing the hard drive and sniffing the user password is insufficient for an attacker to break disk encryption. Instead, the two factor authentication scheme requires an attacker to additionally obtain the actual machine to be able to break encryption.\",\"PeriodicalId\":365574,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on System Software for Trusted Execution\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on System Software for Trusted Execution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007788.3007796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on System Software for Trusted Execution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007788.3007796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们提出了一种将操作系统组件与Intel SGX隔离的新方法。尽管SGX没有被设计成在内核模式下工作,但我们找到了一种方法,通过将SGX的部分移动到用户空间,将Linux内核功能包装在SGX enclave中。内核组件彼此严格隔离,因此一个内核模块中的漏洞不会升级为危及整个内核。我们提供了一个概念验证实现,它使用英特尔SGX飞地保护一个示例内核函数,即全磁盘加密。除了磁盘加密的完整性外,我们的实现还确保磁盘加密密钥的机密性免受所有软件级攻击和物理攻击。除了用户密码之外,我们还使用第二个身份验证因素来获得加密密钥,该密钥以密封方式存储并绑定到平台。因此,窃取硬盘驱动器并嗅探用户密码不足以使攻击者破坏磁盘加密。相反,双因素身份验证方案要求攻击者额外获得能够破解加密的实际机器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolating Operating System Components with Intel SGX
In this paper, we present a novel approach on isolating operating system components with Intel SGX. Although SGX has not been designed to work in kernel mode, we found a way of wrapping Linux kernel functionality within SGX enclaves by moving parts of it to user space. Kernel components are strictly isolated from each other such that a vulnerability in one kernel module cannot escalate into compromising the entire kernel. We provide a proof-of-concept implementation which protects an exemplary kernel function, namely full disk encryption, using an Intel SGX enclave. Besides integrity of the disk encryption, our implementation ensures that the confidentiality of the disk encryption key is protected against all software level attacks as well as physical attacks. In addition to the user password, we use a second authentication factor for deriving the encryption key which is stored sealed and bound to the platform. Thus, stealing the hard drive and sniffing the user password is insufficient for an attacker to break disk encryption. Instead, the two factor authentication scheme requires an attacker to additionally obtain the actual machine to be able to break encryption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信